欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)是($\sqrt{3}$,0),點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$)在橢圓上,O為坐標(biāo)原點(diǎn),當(dāng)直線l:y=kx+m(m≠0)與橢圓C相交于A、B兩點(diǎn)時(shí),對滿足條件的任意m的值,都有|OA|2+|OB|2=5.
(1)求橢圓C的方程.
(2)求△AOB的面積S的最大值,并求出相應(yīng)m的值.

分析 (1)由題意可得c=$\sqrt{3}$,即a2-b2=3,將P的坐標(biāo)代入橢圓方程,解方程可得a,b,進(jìn)而得到橢圓方程;
(2)將直線方程代入橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,以及點(diǎn)到直線的距離公式,求得三角形的面積,由基本不等式可得最大值,及等號成立的條件,代入判別式和條件,檢驗(yàn)即可得到所求值.

解答 解:(1)由題意可得c=$\sqrt{3}$,即a2-b2=3,
P的坐標(biāo)代入橢圓方程可得$\frac{3}{{a}^{2}}$+$\frac{1}{4^{2}}$=1,
解得a=2,b=1,
即有橢圓的方程為$\frac{{x}^{2}}{4}$+y2=1;
(2)設(shè)直線AB的方程為y=kx+m,m≠0,
O到直線AB的距離為d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
將直線y=kx+m代入橢圓方程,可得
(1+4k2)x2+8kmx+4m2-4=0,
由判別式64k2m2-4(1+4k2)(4m2-4)>0,
化簡得1+4k2-m2>0,
設(shè)A(x1,y1),B(x2,y2),可得
x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{2}{m}^{2}}{(1+4{k}^{2})^{2}}-\frac{16{m}^{2}-16}{1+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$,
即有△MNP面積為$\frac{1}{2}$d•|AB|=2•|m|•$\frac{\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$=2•$\frac{\sqrt{{m}^{2}(1+4{k}^{2}-{m}^{2})}}{1+4{k}^{2}}$≤2•$\frac{{m}^{2}+1+4{k}^{2}-{m}^{2}}{2}$•$\frac{1}{1+4{k}^{2}}$=1,
當(dāng)且僅當(dāng)m2=1+4k2-m2,即1+4k2=2m2取得最大值1,
由1+4k2=2m2代入判別式大于0成立;
可得x1+x2=-$\frac{4k}{m}$,x1x2=2-$\frac{2}{{m}^{2}}$,
由y1=kx1+m,y2=kx2+m,
可得|OA|2+|OB|2=x12+y12+x22+y22=(1+k2)[(x1+x22-2x1x2]+2m2+2km(x1+x2)=5,
即有(1+k2)[(-$\frac{4k}{m}$)2-2(2-$\frac{2}{{m}^{2}}$)]+2m2+2km(-$\frac{4k}{m}$)=4-4k2+2m2=4+1=5.
則1+4k2=2m2恒成立.
故當(dāng)m=±$\sqrt{\frac{1+4{k}^{2}}{2}}$時(shí),△OAB的面積取得最大值1.

點(diǎn)評 本題考查橢圓的方程的求法,注意點(diǎn)滿足橢圓方程,考查直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長公式,以及點(diǎn)到直線的距離公式,基本不等式的運(yùn)用:求最值,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某人經(jīng)營一個抽獎游戲,顧客花費(fèi)2元錢可購買一次游戲機(jī)會,每次游戲中,顧客從裝有1個黑球,3個紅球,6個白球的不透明袋子中依次不放回地摸出3個球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎.顧客獲得一等獎、二等獎、三等獎、四等獎時(shí)分別可領(lǐng)取獎金a元、10元、5元、2元.若經(jīng)營者將顧客摸出的球的顏色情況分成以下類別:A:1個黑球2個紅球;B:3個紅球;C:恰有1個白球;D:恰有2個白球;E:3個白球.且經(jīng)營者計(jì)劃將五種類別按照發(fā)生機(jī)會從小到大的順序分別對應(yīng)中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.
(Ⅰ)請寫出一至四等將分別對應(yīng)的類別(寫出字母即可);
(Ⅱ)若經(jīng)營者不打算在這個游戲的經(jīng)營中虧本,求a的最大值;
(Ⅲ)若a=50,當(dāng)顧客摸出的第一個球是紅球時(shí),求他領(lǐng)取的獎金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.過點(diǎn)P(1,-1)作圓x2+y2-2x-2y+1=0的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2015年12月27日全國人大常委會表決通過了人口與計(jì)劃生育法修正案全面二孩定于20I6年1月1日起正式實(shí)施,為了解適齡民眾對放開生育二胎政策的態(tài)度,某機(jī)構(gòu)從某市選取70后和80后作為調(diào)查對象.隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:
 生二孩不生二孩合計(jì)
70后301545
80后451055
合計(jì)7525100
(1)以這100個人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若以該市70后公民中隨機(jī)抽取3位,記其中生二孩的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
(2)根據(jù)調(diào)查數(shù)據(jù),是否在犯錯誤的概率不超過0.1的前提下(有90%以上自把握)認(rèn)為“生二孩與年齡有關(guān)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.平面向量$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{2π}{3}$,$\overrightarrow a=({3,0}),|{\overrightarrow b}|=2$,則$|{\overrightarrow a+2\overrightarrow b}|$等于(  )
A.13B.$\sqrt{37}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知x1,x2是關(guān)于x的一元二次方程4kx2-4kx+k+1=0的兩個實(shí)數(shù)根.
(1)求實(shí)數(shù)k,使(2x1-x2)(x1-2x2)=-$\frac{3}{2}$;
(2)求使$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-2的值為整數(shù)的實(shí)數(shù)k的整數(shù)值;
(3)若k=-2,λ=$\frac{{x}_{1}}{{x}_{2}}$,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示,在△ABC中,AO是BC邊上的中線,K為AO上一點(diǎn),且$\overrightarrow{AO}$=2$\overrightarrow{AK}$,過點(diǎn)K的直線分別交直線AB、AC于不同的兩點(diǎn)M,N,若$\overrightarrow{AB}$=m$\overrightarrow{AM}$,$\overrightarrow{AC}$=n$\overrightarrow{AN}$,則m+n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知sin($\frac{π}{5}$-α)=$\frac{1}{3}$,則cos(2α+$\frac{3π}{5}$)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-{x}^{2}}&{x<0}\end{array}\right.$的反函數(shù)是( 。
A.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案