分析 (1)推導(dǎo)出OD=OC,DE⊥OB,CF⊥OA,從而Rt△ODE≌Rt△OCF,進(jìn)而∠DOE=∠COF=$\frac{1}{2}({\frac{π}{2}-θ})$,由此得到S區(qū)域Ⅱ=$\frac{1}{2}cosθ$(0<θ<$\frac{π}{2}$),從而能求出θ.
(2)由S區(qū)域Ⅰ=$\frac{1}{2}θ$,求出S區(qū)域Ⅲ=S總-S區(qū)域Ⅰ-S區(qū)域Ⅱ=$\frac{π}{4}-\frac{1}{2}θ-\frac{1}{2}$cosθ.記年總收入為y萬(wàn)元,則y=5π+5θ+10cosθ(0<θ<$\frac{π}{2}$),y'=5(1-2sinθ),令y'=0,則θ=$\frac{π}{6}$.由此利用導(dǎo)數(shù)性質(zhì)求出當(dāng)θ=$\frac{π}{6}$時(shí),年總收入最大.
解答 解:(1)∵BD=AC,OB=OA,∴OD=OC.
∵∠AOB=$\frac{π}{2}$,DE∥OA,CF∥OB,
∴DE⊥OB,CF⊥OA.
又∵OE=OF,∴Rt△ODE≌Rt△OCF.
∴∠DOE=∠COF=$\frac{1}{2}({\frac{π}{2}-θ})$,
又OC=OF•cos∠COF
∴S△COF=$\frac{1}{2}$•OC•OF•sin∠COF=$\frac{1}{4}$cosθ
∴S區(qū)域Ⅱ=$\frac{1}{2}cosθ$(0<θ<$\frac{π}{2}$).
由$\frac{1}{2}cosθ=\frac{1}{4}$,得cosθ=$\frac{1}{2}$,
∵0<θ<$\frac{π}{2}$,∴θ=$\frac{π}{3}$.
(2)∵S區(qū)域Ⅰ=$\frac{1}{2}θ$,∴S區(qū)域Ⅲ=S總-S區(qū)域Ⅰ-S區(qū)域Ⅱ=$\frac{π}{4}-\frac{1}{2}θ-\frac{1}{2}$cosθ.
記年總收入為y萬(wàn)元,
則y=30×$\frac{1}{2}θ+40×\frac{1}{2}$cosθ$+20×({\frac{π}{4}-\frac{1}{2}θ}$$\left.{-\frac{1}{2}cosθ})$=5π+5θ+10cosθ(0<θ<$\frac{π}{2}$),
所以y'=5(1-2sinθ),令y'=0,則θ=$\frac{π}{6}$.
當(dāng)0<θ<$\frac{π}{6}$時(shí),y'>0;當(dāng)$\frac{π}{6}<θ<\frac{π}{2}$時(shí),y'<0.
故當(dāng)θ=$\frac{π}{6}$時(shí),y有最大值,即年總收入最大.
點(diǎn)評(píng) 本題考查扇形面積、導(dǎo)數(shù)的性質(zhì)及應(yīng)用、函數(shù)性質(zhì)、構(gòu)造法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,3) | B. | (2,3) | C. | (2,4) | D. | (1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 1 | C. | -$\frac{1}{3}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,e2) | B. | (e-2,+∞) | C. | (e2,+∞) | D. | (e-2,e2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com