【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2).
![]()
![]()
根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù)(顆)和溫差具有線性相關關系.
附:
,![]()
(1)求綠豆種子出芽數(shù)(顆)關于溫差的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11℃,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).
【答案】(1)
(2)4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)約為5125顆
【解析】
(1)根據(jù)最高(低)溫度折線圖和出芽數(shù)條形圖可得出數(shù)據(jù)表,分別求出
,
,
,
,
,
,從而得出綠豆種子出芽數(shù)(顆)關于溫差的回歸方程;
(2)根據(jù)4月1日至7日溫差的平均值為11℃,求出4月7日的溫差
,代入第(1)問所求的回歸方程中得100顆綠豆種子出芽數(shù)(顆),從而估計出4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).
(1)解:依照最高(低)溫度折線圖和出芽數(shù)條形圖可得如下數(shù)據(jù)表:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 |
溫差 | 7 | 8 | 12 | 9 | 13 | 11 |
出芽數(shù) | 23 | 26 | 37 | 31 | 40 | 35 |
故
,
,
|
|
| 2 |
| 3 | 1 |
|
|
| 5 |
| 8 | 3 |
,
,
所以,
,
則
,
所以,綠豆種子出芽數(shù)
(顆)關于溫差
(℃)的回歸方程為
.
(2)解:因為4月1日至7日溫差的平均值為11℃,
所以4月7日的溫差
(℃),
所以,
,
所以,4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)約為5125顆.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)
,若存在區(qū)間
,使得
,則稱函數(shù)
為“可等域函數(shù)”,區(qū)間
為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):
①
;
②
;
③
;
④
.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
,點F是PB的中點,點E在邊BC上移動.
![]()
(1)點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
(2)求證:無論點E在BC邊的何處,都有
;
(3)當
為何值時,
與平面
所成角的大小為45°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若曲線
在
處的切線方程為
,求
的值;
(2)在(1)的條件下,求函數(shù)
零點的個數(shù);
(3)若不等式
對任意
都成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
在區(qū)間
上為單調(diào)遞減函數(shù).
(1)求
的最大值;
(2)當
時,方程
有三個實根,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為
的正方形
中,線段BC的端點
分別在邊
、
上滑動,且
,現(xiàn)將
,
分別沿AB,AC折起使點
重合,重合后記為點
,得到三被錐
.現(xiàn)有以下結論:
![]()
①
平面
;
②當
分別為
、
的中點時,三棱錐
的外接球的表面積為
;
③
的取值范圍為
;
④三棱錐
體積的最大值為
.
則正確的結論的個數(shù)為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點O,
軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為
,若直線l經(jīng)過點P,且傾斜角為
,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
、
,橢圓的離心率為
,過橢圓
的左焦點
,且斜率為
的直線
,與以右焦點
為圓心,半徑為
的圓
相切.
(1)求橢圓
的標準方程;
(2)線段
是橢圓
過右焦點
的弦,且
,求
的面積的最大值以及取最大值時實數(shù)
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com