【題目】圖1,平行四邊形
中,
,
,現(xiàn)將
沿
折起,得到三棱錐
(如圖2),且
,點
為側(cè)棱
的中點.
![]()
(1)求證:
平面
;
(2)求三棱錐
的體積;
(3)在
的角平分線上是否存在點
,使得
平面
?若存在,求
的長;若不存在,請說明理由.
【答案】(1)見解析;(2)
;(3)
.
【解析】試題分析:(Ⅰ)由平面幾何知識先證明
,再由線面垂直的判定的定理可得
平面
,從而得
,進而可得
平面
,最后由由線面垂直的判定的定理可得結(jié)論;(Ⅱ)由等積變換可得
,進而可得結(jié)果;(Ⅱ)取
中點
,連接
并延長至點
,使
,連接
,
,
,先證四邊形
為平行四邊形,則有
∥
,利用平面幾何知識可得結(jié)果.
試題解析:(Ⅰ)證明:在平行四邊形
中,有
,又因為
為側(cè)棱
的中點,
所以
;
又因為
,
,且
,所以
平面
.
又因為
平面
,所以
;
因為
,
所以
平面
,
又因為
平面
,
所以平面
平面
.
(Ⅱ)解:因為
,
平面
,所以
是三棱錐的高,
故
,
又因為
,
,
,所以
,
所以有
.
(Ⅲ)解:取
中點
,連接
并延長至點
,使
,連接
,
,
.
因為
,所以射線
是角
的角分線.
![]()
又因為點
是的
中點,所以
∥
,
因為
平面
,
平面
,
所以
∥平面
.
因為
、
互相平分,
故四邊形
為平行四邊形,有
∥
.
又因為
,所以有
,
又因為
,故
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,且點
在橢圓
上.
⑴求橢圓
的標(biāo)準(zhǔn)方程;
⑵已知動直線
過點
且與橢圓
交于
兩點.試問
軸上是否存在定點
,使得
恒成立?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列
,則此數(shù)列的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
,已知曲線
在點
處的切線與直線
平行.
(Ⅰ)若方程
在
內(nèi)存在唯一的根,求出
的值;
(Ⅱ)設(shè)函數(shù)
(
表示
中的較小值),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機模擬方法近似計算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個)0~1區(qū)間上的均勻隨機數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個點(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點數(shù)N1,那么由隨機模擬方法可得S的近似值為_____.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形的平行投影仍是三角形,則下列命題:
①三角形的高線的平行投影,一定是這個三角形的平行投影的高線;
②三角形的中線的平行投影,一定是這個三角形的平行投影的中線;
③三角形的角平分線的平行投影,一定是這個三角形的平行投影的角平分線;
④三角形的中位線的平行投影,一定是這個三角形的平行投影的中位線.
其中正確的命題有 ( )
A. ①② B. ②③
C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的焦距為
,且經(jīng)過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
、
是橢圓
上兩點,線段
的垂直平分線
經(jīng)過
,求
面積的最大值(
為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高一年級學(xué)生中,對自然科學(xué)類、社會科學(xué)類校本選修課程的選課意向進行調(diào)查.現(xiàn)從高一年級學(xué)生中隨機抽取
名學(xué)生,其中男生
名;在這名
學(xué)生中選擇社會科學(xué)類的男生、女生均為
名.
(1)試問:從高一年級學(xué)生中隨機抽取
人,抽到男生的概率約為多少?
(2)根據(jù)抽取的
名學(xué)生的調(diào)查結(jié)果,完成下列列聯(lián)表.并判斷能否在犯錯誤的概率不超過
的前提下認(rèn)為科類的選擇與性別有關(guān)?
選擇自然科學(xué)類 | 選擇社會科學(xué)類 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com