分析 (1)證明BC⊥AD,可得BC⊥平面PAD,即可證明PD⊥BC;
(2)取AD的中點F,連接PF,作OE∥BC,作OM∥PF,則OE⊥平面PAD,確定∠OME是二面角E-AD-P的平面角,利用OM=OE,即可得出結論.
解答
(1)證明:∵AB=AC,D為BC的中點,
∴BC⊥AD,
∵PA⊥BC,PA∩AD=A,
∴BC⊥平面PAD,
∵PD?平面PAD,
∴PD⊥BC;
(2)解:PE=$\frac{1}{3}$PB時,二面角E-AD-P的大小為45°.
取AD的中點F,連接PF,作OE∥BC,作OM∥PF,則OE⊥平面PAD,
由題意,AD=2$\sqrt{2}$,∴PA⊥PD,∴PF⊥AD,∴OM⊥AD,
∴∠OME是二面角E-AD-P的平面角,
設PE=λPC,則OE=2$\sqrt{2}$λ.OM=$\sqrt{2}$(1-λ),
∵二面角E-AD-P的大小為45°,
∴OE=OM,
∴2$\sqrt{2}$λ=$\sqrt{2}$(1-λ),
∴λ=$\frac{1}{3}$.
點評 本題考查線面垂直的判定與性質,考查二面角的平面角,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {$\frac{1}{3}$,$\frac{2}{3}$} | B. | {$\frac{1}{3}$,$\frac{2}{3}$,$\frac{π}{6}$} | C. | {V|$\frac{1}{3}$≤V≤$\frac{2}{3}$} | D. | {V|0<V≤$\frac{2}{3}$} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {x|1<x<3} | B. | {x|-1≤x<3} | C. | {x|x<-1} | D. | {x|x>3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com