| 證明:(Ⅰ)如圖,過(guò)點(diǎn)A在平面A1ABB1內(nèi)作AD⊥A1B于D, 則由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC∩側(cè)面A1ABB1=A1B, 得AD⊥平面A1BC, 又BC 因?yàn)槿庵鵄BC-A1B1C1是直三棱柱, 則AA1⊥底面ABC,所以AA1⊥BC, 又AA1∩AD=A, 從而B(niǎo)C⊥側(cè)面A1ABB1, 又AB 故AB⊥BC。 (Ⅱ)連接CD,則由(Ⅰ)知∠ACD就是直線AC與平面A1BC所成的角, ∠ABA1就是二面角A1-BC-A的夾角,即∠ACD=θ,∠ABA1=ψ, 于是在RtΔADC中,sinθ= 在RtΔADA1中,sin∠AA1D= ∴sinθ=sin∠AA1D,由于θ與∠AA1D都是銳角,所以θ=∠AA1D, 又由RtΔA1AB知,∠AA1D+ψ=∠AA1B+ψ= 故θ+ψ= |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來(lái)源:]
P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com