分析 首先利用定積分分別求出S1,S2,得到函數(shù)g(t),然后分析其單調(diào)性.
解答 解:由題意S1=${∫}_{0}^{t}{(t}^{2}-{x}^{2})dx$=(t2x-$\frac{1}{3}{x}^{3}$)|${\;}_{0}^{t}$=$\frac{2}{3}{t}^{3}$,
S2=${∫}_{t}^{1}({x}^{2}-{t}^{2})dx$=($\frac{1}{3}{x}^{3}-{t}^{2}x$)|${\;}_{t}^{1}$=$\frac{1}{3}-{t}^{2}+\frac{2}{3}{t}^{3}$,
所以g(t)=S1+S2=$\frac{4}{3}{t}^{3}-{t}^{2}+\frac{1}{3}$,g'(t)=4t2-2t=2t(2t-1),令g'(t)>0解得t>$\frac{1}{2}$或t<0,又0<t<1,
所以函數(shù)g(t)=S1+S2的單調(diào)遞增區(qū)間為($\frac{1}{2}$,1);
故答案為:($\frac{1}{2}$,1).
點(diǎn)評(píng) 本題考查了利用定積分求曲邊梯形的面積以及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;屬于經(jīng)?疾榈念}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {1,3} | B. | [1,5) | C. | {1,3,5} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 存在四邊相等的四邊形不是正方形 | |
| B. | 設(shè)x,y∈R,則“(x-y)•x2<0”是“x<y”的必要而不充分條件 | |
| C. | 若x,y∈R,且x+y>2,則x,y至少有一個(gè)大于1 | |
| D. | 命題:?n∈N,2n>1000的否定是:?n∈N,2n≤1000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5π}{56}$ | B. | $\frac{5}{56}$ | C. | $\frac{5π}{28}$ | D. | $\frac{5}{28}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com