【題目】在直角坐標(biāo)系
中,以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.己知圓
的圓心的坐標(biāo)為
半徑為
,直線
的參數(shù)方程為
為參數(shù))
(Ⅰ)求圓C的極坐標(biāo)方程;直線
的普通方程;
(Ⅱ)若圓C和直線
相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
【答案】(Ⅰ) 圓C的極坐標(biāo)方程為
直線
的普通方程為
;(Ⅱ)![]()
【解析】
(Ⅰ)根據(jù)題干得到圓的標(biāo)準(zhǔn)方程,再通過(guò)極坐標(biāo)和直角坐標(biāo)的互化得到極坐標(biāo)方程,通過(guò)參數(shù)方程得到直線的斜率和定點(diǎn)可得到直線方程;(Ⅱ)計(jì)算得到圓心到直線的距離,已知圓的半徑,根據(jù)勾股定理得到弦長(zhǎng).
(Ⅰ)圓
的圓心的坐標(biāo)為
半徑為
,得到圓的一般方程為:
化為極坐標(biāo)得到
.
直線
的參數(shù)方程為
,可得到直線的斜率為1,過(guò)點(diǎn)(1,0),由點(diǎn)斜式得到方程為:
.
(Ⅱ)圓心為(-4,0),圓心到直線的距離為d=
半徑為4,由勾股定理得到弦長(zhǎng)為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得?/span>
個(gè)組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀(jì)年法”中的甲午年,那么2020年是“干支紀(jì)年法”中的()
A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,點(diǎn)
,直線
,設(shè)圓
的半徑為1, 圓心在
上.
![]()
(1)若圓心
也在直線
上,過(guò)點(diǎn)
作圓
的切線,求切線方程;
(2)若圓
上存在點(diǎn)
,使
,求圓心
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲乙兩輛車去同一貨場(chǎng)裝貨物,貨場(chǎng)每次只能給一輛車裝貨物,所以若兩輛車同時(shí)到達(dá),則需要有一車等待.已知甲、乙兩車裝貨物需要的時(shí)間都為20分鐘,倘若甲、乙兩車都在某1小時(shí)內(nèi)到達(dá)該貨場(chǎng),則至少有一輛車需要等待裝貨物的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4男3女站成一排,求滿足下列條件的排法共有多少種?
任何兩名女生都不相鄰,有多少種排法?
男甲不在首位,男乙不在末位,有多少種排法?
男生甲、乙、丙順序一定,有多少種排法?
男甲在男乙的左邊
不一定相鄰
有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)
與月份之間的回歸直線方程
;
(2)交警從這5個(gè)月內(nèi)通過(guò)該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下
列聯(lián)表:能否據(jù)此判斷有
的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
不禮讓斑馬線 | 禮讓斑馬線 | 合計(jì) | |
駕齡不超過(guò)1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
參考公式及數(shù)據(jù):
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,其圖象在點(diǎn)
處切線的斜率為-3.
(1)求
與
關(guān)系式;
(2)求函數(shù)
的單調(diào)區(qū)間(用只含有
的式子表示);
(3)當(dāng)
時(shí),令
,設(shè)
是函數(shù)
的兩個(gè)零點(diǎn),
是
與
的等差中項(xiàng),求證:
(
為函數(shù)
的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道一次函數(shù)、二次函數(shù)的圖像都是連續(xù)不斷的曲線,事實(shí)上,多項(xiàng)式函數(shù)的圖像都是如此.
(1)設(shè)
,且
,若還有
,求證:
;
(2)設(shè)一個(gè)多項(xiàng)式函數(shù)有奇次項(xiàng)
(
),求證:總能通過(guò)只調(diào)整
的系數(shù),使得調(diào)整后的多項(xiàng)式一定有零點(diǎn);
(3)現(xiàn)有未知數(shù)為
的多項(xiàng)式方程
(其中實(shí)數(shù)
待定),甲、乙兩人進(jìn)行一個(gè)游戲:由甲開始交替確定
中的一個(gè)數(shù)(每次只能去確定剩余還未定的數(shù)),當(dāng)甲確定最后一個(gè)數(shù)后,若方程由實(shí)數(shù)解,則乙勝,反之甲勝,問(wèn):乙有必勝的策略嗎?若有,請(qǐng)給出策略并證明,若無(wú),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有
六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中
,各踢了
場(chǎng),
各踢了
場(chǎng),
踢了
場(chǎng),且
隊(duì)與
隊(duì)未踢過(guò),
隊(duì)與
隊(duì)也未踢過(guò),則在第一周的比賽中,
隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com