(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)
=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)
的取值范圍.
21.(Ⅰ)解:由拋物線C的方程y=ax2(a<0)得,焦點(diǎn)坐標(biāo)為(0,
),準(zhǔn)線方程為
y= -![]()
(Ⅱ)證明:設(shè)直線PA的方程為y-y0=k1(x-x0).直線PB的方程為y-y0=k2(x-x0)
點(diǎn)P(x0,y0)和點(diǎn)A(x1,y1)的坐標(biāo)是方程組
|
的解,將②式代入①式得ax2-k1x+k1x0-y0=0,于是x1+x0=
,故
x1=
-x0 ③
又點(diǎn)P(x0,y0)和點(diǎn)B(x2,y2)的坐標(biāo)是方程組
![]()
![]()
的解,將⑤式代入④式得ax2-k2x+k2x0-y0=0,于是x2+x0=
,故
x2=
-x0
由已知得,k2=-λk1,則x2=-
k1-x0 ⑥
設(shè)點(diǎn)M的坐標(biāo)為(xM, yM),由
,則
xM=![]()
將③式和⑥式代入上式得
xM=
=-x0,
即xM+x0=0,所以,線段PM的中點(diǎn)在y軸上.
(Ⅲ)解:因?yàn)辄c(diǎn)P(1, -1)在拋物線y=ax2上,所以a=-1,拋物線方程為y=-x2.
由③式知x1=-k1-1,代入y= x2得y1= -(k1+1)2
將λ=1代入⑥式得x2=k1-1,代入y=-x2得y2=-(k1-1)2.
因此,直線PA、PB分別與拋物線C的交點(diǎn)A、B的坐標(biāo)為
A(-k1-1, -k12-2k1-1), B(k1-1, -k12+2k1-1)
于是
=(k1+2, k12+2 k1),
=(2k1,4k1)
·
=2k1(k1+2)+4k1(k12+2k1)
=2k1 (k1+2)(2k1+1)
因∠PAB為鈍角且P、A、B三點(diǎn)互不相同,故必有
·
<0,即
k1 (k1+2)(2k1+1)<0,
求得k1的取值范圍為
k1<-2或-
<k1<0
又點(diǎn)A的縱坐標(biāo)y1滿足y1= -(k1+1)2,故
當(dāng)k1<-2時(shí),y1<-1
當(dāng)-
<k1<0時(shí),-1<y1<-![]()
所以,∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍為
(-∞,-1)∪(-1,-
).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:福建福州八中2009年元月高三調(diào)研考試試卷(數(shù)學(xué)文) 題型:013
已知拋物線C的方程為
,過(guò)點(diǎn)A(0,-1)和點(diǎn)B(t,3)的直線與拋物線C沒(méi)有公共點(diǎn),則實(shí)數(shù)t的取值范圍是
A.(-∞,-1)∪(1,+∞)
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年天津卷)(14分)
拋物線C的方程為
,過(guò)拋物線C上一點(diǎn)
(
)作斜率為
的兩條直線分別交拋物線C于
,
兩點(diǎn)(P、A、B三點(diǎn)互不相同),且滿足
(
≠0且
)。
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
,證明線段PM的中點(diǎn)在y軸上
(Ⅲ)當(dāng)
時(shí),若點(diǎn)P的坐標(biāo)為(1,
1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
拋物線C的方程為
,過(guò)拋物線C上一點(diǎn)P(x0,y0)(x 0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足
.
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)
=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:單選題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com