分析 構(gòu)造函數(shù)g(x)=e-2xf(x)-e-2x,則g′(x)>0,g(x)單調(diào)遞增,不等式f(x)>2017e2x+1兩邊同乘e-2x得出g(x)>2017,從而得出x的范圍.
解答 解:設(shè)g(x)=e-2xf(x)-e-2x,
則g′(x)=-2e-2xf(x)+e-2xf′(x)+2e-2x=-e-2x[2f(x)-f′(x)-2],
∵2f(x)-f'(x)<2,
∴g′(x)>0,∴g(x)在R上單調(diào)遞增.
∵f(x)>2017e2x+1,∴e-2xf(x)>2017+e-2x,即g(x)>2017,
∵g(0)=f(0)-1=2017,
∴x>0.
故答案為(0,+∞).
點評 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)單調(diào)性的應(yīng)用,構(gòu)造g(x)是解題關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 1 | C. | 0 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{25}{4}π$ | B. | $\frac{25}{12}π$ | C. | $\frac{125}{48}π$ | D. | 25π |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com