【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函數(shù)g(x)=|f(x)|﹣a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ) 求|f(x+1)|≤4的解集.
【答案】解:(Ⅰ)因?yàn)閒(x)是定義在R上的奇函數(shù),且f(x)=x2﹣2x﹣3(x>0), 則 ![]()
從而可得函數(shù)y=f(x)與y=|f(x)|的圖象分別如下圖所示.![]()
因?yàn)楹瘮?shù)g(x)=|f(x)|﹣a有4個(gè)零點(diǎn),
則題設(shè)可等價(jià)轉(zhuǎn)化為函數(shù)y=|f(x)|與函數(shù)y=a的圖象有4個(gè)交點(diǎn).
由右上圖可知,a=4或0<a≤3,
即:當(dāng)a=4或0<a≤3時(shí),函數(shù)g(x)=|f(x)|﹣a有4個(gè)零點(diǎn).
(Ⅱ)令f(x)=4得,
或﹣1,
因?yàn)閒(x)是定義在R上的奇函數(shù),當(dāng)f(x)=﹣4時(shí),解得
或1
結(jié)合左上圖可知,
,
即:
.
所以所求解集為 ![]()
【解析】(Ⅰ)利用f(x)是定義在R上的奇函數(shù),求出函數(shù)的解析式,畫出函數(shù)y=f(x)與y=|f(x)|的圖象,利用函數(shù)g(x)=|f(x)|﹣a有4個(gè)零點(diǎn),轉(zhuǎn)化為函數(shù)y=|f(x)|與函數(shù)y=a的圖象有4個(gè)交點(diǎn).推出實(shí)數(shù)a的取值范圍即可.(Ⅱ)令f(x)=4得,
或﹣1,利用函數(shù)f(x)是定義在R上的奇函數(shù),結(jié)合圖象,求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識(shí),掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號(hào).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分,則該函數(shù)的解析式為( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn)O,過點(diǎn)
,其焦點(diǎn)F在x軸上.
求拋物線C的標(biāo)準(zhǔn)方程;
斜率為1且與點(diǎn)F的距離為
的直線
與x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);
是否存在過點(diǎn)M的直線l,使l與C交于P、Q兩點(diǎn),且
若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(Ⅰ)設(shè)函數(shù)g(x)=
,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=t有兩個(gè)不相等的實(shí)數(shù)根x1 , x2 , 求證:x1+x2
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸為正半軸為極軸,建立極坐標(biāo)系.設(shè)曲線C:
(α為參數(shù));直線l:ρ(cosθ+sinθ)=4.
(Ⅰ)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)求曲線C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ex(x2+ax+b)有極值點(diǎn)x1 , x2(x1<x2),且f(x1)=x1 , 則關(guān)于x的方程f2(x)+(2+a)f(x)+a+b=0的不同實(shí)根個(gè)數(shù)為( )
A.0
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點(diǎn),則a=( )
A.﹣ ![]()
B.![]()
C.![]()
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)S、A、B、C在半徑為
的同一球面上,點(diǎn)S到平面ABC的距離為
,AB=BC=CA=
,則點(diǎn)S與△ABC中心的距離為( )
A.![]()
B.![]()
C.1
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com