【題目】如圖,平面
平面
,
直線
,
是
內(nèi)不同的兩點(diǎn),
是
內(nèi)不同的兩點(diǎn),且
直線
上
分別是線段
的中點(diǎn),下列判斷正確的是( )
![]()
A. 當(dāng)
時,
兩點(diǎn)不可能重合
B.
兩點(diǎn)可能重合,但此時直線
與
不可能相交
C. 當(dāng)
與
相交,直線
平行于
時,直線
可以與
相交
D. 當(dāng)
是異面直線時,直線
可能與
平行
【答案】B
【解析】由位置關(guān)系判斷就可,本題宜用直接法來進(jìn)行判斷,B項(xiàng)正確易證
解答:對于A選項(xiàng),當(dāng)|CD|=2|AB|時,若A,B,C,D四點(diǎn)共面AC∥BD時,則M,N兩點(diǎn)能重合.故A不對;
對于B選項(xiàng),若M,N兩點(diǎn)可能重合,則AC∥BD,故AC∥l,此時直線AC與直線l不可能相交,故B對;
對于C選項(xiàng),當(dāng)AB與CD相交,直線AC平行于l時,直線BD可以與l平行,故C不對;
對于D選項(xiàng),當(dāng)AB,CD是異面直線時,MN不可能與l平行,故選B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
,曲線
上的動點(diǎn)
滿足:
.
(1)求曲線
的方程;
(2)設(shè)
為坐標(biāo)原點(diǎn),第一象限的點(diǎn)
分別在
和
上,
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,
是邊長為3的正方形,
平面
與平面
所成角為
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)設(shè)點(diǎn)
是線段
上一個動點(diǎn),試確定點(diǎn)
的位置,使得
平面
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇7,15),設(shè)f(2x+1)的定義域?yàn)锳,B={x|x<a或x>a+1},若A∪B=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,判斷
的單調(diào)性;
(2)若
在
上為單調(diào)增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中常數(shù)
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)遞增區(qū)間;
(2)設(shè)定義在
上的函數(shù)
在點(diǎn)
處的切線方程為
,若
在
內(nèi)恒成立,則稱
為函數(shù)
的“類對稱點(diǎn)”,當(dāng)
時,試問
是否存在“類對稱點(diǎn)”,若存在,請至少求出一個“類對稱點(diǎn)”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知g(x)=﹣x2﹣3,f(x)是二次函數(shù),f(x)+g(x)是奇函數(shù),且當(dāng)x∈[﹣1,2]時,f(x)的最小值為1,求f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e|x|+|x|,若關(guān)于x的方程f(x)=k有兩個不同的實(shí)根,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com