分析 根據(jù)已知條件及圖形得出:$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{BE}=-\overrightarrow{AB}+λ\overrightarrow{AC}$,并且$\overrightarrow{AB}•\overrightarrow{AC}=0$,所以由$\overrightarrow{AO}•\overrightarrow{BE}=-20$即可得到$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})•(-\overrightarrow{AB}+λ\overrightarrow{AC})$=-20,進(jìn)行數(shù)量積的運(yùn)算即可求得λ.
解答 解:$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=-\overrightarrow{AB}+λ\overrightarrow{AC}$;
∵∠BAC=90°,∴$\overrightarrow{AB}•\overrightarrow{AC}=0$;
又$\overrightarrow{AO}•\overrightarrow{BE}=-20$;
∴$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})•(-\overrightarrow{AB}+λ\overrightarrow{AC})=\frac{1}{2}$$(-{\overrightarrow{AB}}^{2}+λ{(lán)\overrightarrow{AC}}^{2})=\frac{1}{2}(-64+36λ)=-20$;
∴$λ=\frac{2}{3}$.
故答案為:$\frac{2}{3}$.
點(diǎn)評(píng) 考查向量加法的平行四邊形法則,向量加法的幾何意義,以及數(shù)量積的運(yùn)算,兩非零向量垂直的充要條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6:1 | B. | 3:1 | C. | 7:1 | D. | 4:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 48種 | B. | 72種 | C. | 78種 | D. | 84種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{12}$ | C. | $\frac{1}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com