【題目】如圖,在平面直角坐標系
中,已知
分別是橢圓
:
(
)的左右焦點,點
是橢圓
上一點,且
.若橢圓
的內(nèi)接四邊形
的邊
的延長線交于橢圓外一點
,且點
的橫坐標為1,記直線
的斜率分別為
,
.
![]()
(1)求橢圓
的標準方程;
(2)若
,求
的值.
【答案】(1)
.(2)![]()
【解析】
(1)求橢圓定義可知
,點
代入即可得出結(jié)果;
(2)設(shè)
,
,因為
的延長線交于橢圓外一點
,且點
的橫坐標為1,于是有
,將直線與橢圓方程聯(lián)立,結(jié)合韋達定理及弦長公式可求得
,
,根據(jù)已知條件
化簡即可得出結(jié)果.
(1)![]()
,∴![]()
點
是橢圓
上一點,代入方程:
,∴
,
∴橢圓
的標準方程:![]()
(2)設(shè)
,![]()
的延長線交于橢圓外一點
,且點
的橫坐標為1,于是有
①
②
于是:![]()
代入②可得![]()
同理![]()
又
,
可得:![]()
∴![]()
法二:(1)由
為橢圓
的左右焦點,
為
上一點,![]()
∴
,∴
,∴橢圓![]()
將
代入可得![]()
∴橢圓
的標準方程為![]()
(2)設(shè)
,由
斜率分別為![]()
則直線
的方程分別為![]()
將
與
聯(lián)立,設(shè)![]()
![]()
由韋達定理,![]()
∴![]()
![]()
![]()
![]()
同理可證![]()
則由
,得![]()
從而![]()
即![]()
∴
,∴![]()
又
為
的內(nèi)接四邊形,∴
,∴![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+4[sin(θ+
)]x﹣2,θ∈[0,2π].
(Ⅰ)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(Ⅱ)若f(x)在[﹣
,1]上是單調(diào)函數(shù),求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月25日.阿里巴巴在杭州云棲大會上正式對外發(fā)布了含光800AI芯片,在業(yè)界標準的ResNet -50測試中,含光800推理性能達到78563lPS,比目前業(yè)界最好的AI芯片性能高4倍;能效比500 IPS/W,是第二名的3.3倍.在國內(nèi)集成電路產(chǎn)業(yè)發(fā)展中,集成電路設(shè)計產(chǎn)業(yè)始終是國內(nèi)集成電路產(chǎn)業(yè)中最具發(fā)展活力的領(lǐng)域,增長也最為迅速.如圖是2014-2018年中國集成電路設(shè)計產(chǎn)業(yè)的銷售額(億元)及其增速(%)的統(tǒng)計圖,則下面結(jié)論中正確的是( )
![]()
A.2014-2018年,中國集成電路設(shè)計產(chǎn)業(yè)的銷售額逐年增加
B.2014-2017年,中國集成電路設(shè)計產(chǎn)業(yè)的銷售額增速逐年下降
C.2018年中國集成電路設(shè)計產(chǎn)業(yè)的銷售額的增長率比2015年的高
D.2018年與2014年相比,中國集成電路設(shè)計產(chǎn)業(yè)銷售額的增長率約為110%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標原點,拋物線E的方程為x2=2py(p>0),其焦點為F,過點M (0,4)的直線
與拋物線相交于P、Q兩點且△OPQ為以O為直角頂點的直角三角形.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)點N為曲線E上的任意一點,證明:以FN為直徑的圓與x軸相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費政策”某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間
,9:40~10:00記作
,10:00~10:20記作
,10:20~10:40記作
.例如:10點04分,記作時刻64.
![]()
(1)估計這600輛車在9:20~10:40時間段內(nèi)通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布
,其中
可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,
可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
的左、右焦點分別為F1、F2,過點F1作圓x2+y2=a2的切線交雙曲線右支于點M,若tan∠F1MF2=2,又e為雙曲線的離心率,則e2的值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,將曲線方程
,先向左平移2個單位,再向上平移2個單位,得到曲線C.
(1)點M(x,y)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出
的最大值;
(2)設(shè)直線l的參數(shù)方程為
,(t為參數(shù)),又直線l與曲線C的交點為E,F,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段EF的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
和函數(shù)
,關(guān)于這兩個函數(shù)圖像的交點個數(shù),下列四個結(jié)論:①當(dāng)
時,兩個函數(shù)圖像沒有交點;②當(dāng)
時,兩個函數(shù)圖像恰有三個交點;③當(dāng)
時,兩個函數(shù)圖像恰有兩個交點;④當(dāng)
時,兩個函數(shù)圖像恰有四個交點.正確結(jié)論的個數(shù)為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com