欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.若曲線y=ex+ax+b在點(diǎn)(0,2)處的切線l與直線x+3y+1=0垂直,則a+b=( 。
A.-3B.3C.1D.-1

分析 求出原函數(shù)的導(dǎo)函數(shù),由題意列關(guān)于a,b的方程組,求解得答案.

解答 解:由y=ex+ax+b,得y′=ex+a,
∴y′|x=0=a+1,
∵曲線y=ex+ax+b在點(diǎn)(0,2)處的切線l與直線x+3y+1=0垂直,
∴$\left\{\begin{array}{l}{{e}^{0}+b=2}\\{a+1=3}\end{array}\right.$,解得a=2,b=1.
∴a+b=3.
故選:B.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,過(guò)曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.方程x2sinα-y2cosα=1,0<α<π表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍是($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}-\overrightarrow$)⊥$\overrightarrow{a}$
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角及向量$\overrightarrow$在向量$\overrightarrow{a}$方向上的投影;
(2)求|2$\overrightarrow{a}-\overrightarrow$|的值;
(3)若向量$\overrightarrow{c}$=3$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrowbkkc0kg$=m$\overrightarrow{a}$-3$\overrightarrow$,$\overrightarrow{c}∥\overrightarrowhuqiqso$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知tan α=$\frac{1}{2}$.求:
(1)$\frac{sinα-3cosα}{sinα+cosα}$的值;
(2)sin2α+sin αcos α+2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程ρ=4$\sqrt{2}sin({\frac{3π}{4}-θ})$,過(guò)P(0,2)作斜率為$\sqrt{3}$的直線l交曲線C于點(diǎn)A,B兩點(diǎn),求|PA|•|PB|的值.
(2)已知曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}$(θ為參數(shù)),若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)壓縮為原來(lái)的$\frac{{\sqrt{3}}}{2}$倍,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l:$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}({t為參數(shù)})$的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸非負(fù)半軸重合,直線l的極坐標(biāo)方程為3ρcosθ+ρsinθ-6=0,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$,
(1)求直線l和圓C的直角坐標(biāo)系方程;
(2)若相交,求出直線被圓所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={1,3,5,7},B={4,8}現(xiàn)從集合A中任取一個(gè)數(shù)為a,從B中任取一個(gè)數(shù)為b,則b>a的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.參數(shù)方程$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))所表示的曲線為( 。
A.拋物線的一部分B.一條拋物線C.雙曲線的一部分D.一條雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖:在四棱錐E-ABCD中,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,EC⊥BD,底面四邊形是個(gè)圓內(nèi)接四邊形,且AC是圓的直徑.
(1)求證:平面BED⊥平面ABCD;
(2)點(diǎn)P是平面ABE內(nèi)一點(diǎn),滿足DP∥平面BEC,求直線DP與平面ABE所成角的正弦值的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案