欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.如圖,在等腰直角△ABO中,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,C為AB上靠近A點(diǎn)的三等分點(diǎn),過C作AB的垂線l,設(shè)P為垂線上任一點(diǎn),$\overrightarrow{OP}$=$\overrightarrow{p}$,則$\overrightarrow{p}$•($\overrightarrow$-$\overrightarrow{a}$)=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

分析 P在線段AB的垂直平分線上,通過向量的加減運(yùn)算,向量的數(shù)量積的運(yùn)算即可得到結(jié)果.

解答 解:∵等腰直角△ABO中,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,
C為AB上靠近A點(diǎn)的三等分點(diǎn),過C作AB的垂線l,設(shè)P為垂線上任一點(diǎn),$\overrightarrow{OP}$=$\overrightarrow{p}$,
設(shè)AB中點(diǎn)為D,則$\overrightarrow{OP}$=$\overrightarrow{OC}$+$\overrightarrow{CP}$,$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{2}{3}$$\overrightarrow{OA}$.
∵$\overrightarrow{CP}$⊥$\overrightarrow{AB}$,∴$\overrightarrow{CP}$•$\overrightarrow{BA}$=$\overrightarrow{CP}$•($\overrightarrow{a}$-$\overrightarrow$)=0,
∴$\overrightarrow{p}$•($\overrightarrow$-$\overrightarrow{a}$)=$\overrightarrow{OP}$•($\overrightarrow{OB}$-$\overrightarrow{OA}$)=($\overrightarrow{OC}$+$\overrightarrow{CP}$)•$\overrightarrow{AB}$=$\overrightarrow{OC}•\overrightarrow{AB}$+$\overrightarrow{CP}•\overrightarrow{AB}$
=$\overrightarrow{OC}$•$\overrightarrow{AB}$+0=($\frac{1}{3}$$\overrightarrow{OB}$+$\frac{2}{3}$$\overrightarrow{OA}$)•($\overrightarrow{OB}$-$\overrightarrow{OA}$)=$\frac{{\overrightarrow{OB}}^{2}}{3}$-$\frac{{2\overrightarrow{OA}}^{2}}{3}$+$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{3}$
=$\frac{1}{3}$-$\frac{2}{3}$+0=-$\frac{1}{3}$,
故選:B.

點(diǎn)評(píng) 本題考查線段垂直平方線的性質(zhì)、向量的運(yùn)算法則、向量模的平方等于向量的平方,考查轉(zhuǎn)化計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知A、B是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左右頂點(diǎn),離心率為$\frac{1}{2}$,且橢圓過定點(diǎn)$(1,\frac{3}{2})$,P為橢圓右準(zhǔn)線上任意一點(diǎn),直線PA,PB分別交橢圓于M,N.
(1)求橢圓的方程;
(2)若線段MN與x軸交于Q點(diǎn)且$\overrightarrow{MQ}=λ\overrightarrow{QN}$,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知遞增數(shù)列{an}共有2017項(xiàng),且各項(xiàng)均不為零,a2017=1,如果從{an}中任取兩項(xiàng)ai,aj,當(dāng)i<j時(shí),aj-ai仍是數(shù)列{an}中的項(xiàng),則數(shù)列{an}的各項(xiàng)和S2017=1009.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)g(x)的定義域?yàn)閧x|x≠0},且g(x)≠0,設(shè)p:函數(shù)$f(x)=g(x)({\frac{1}{{1-{2^x}}}-\frac{1}{2}})$是偶函數(shù);q:函數(shù)g(x)是奇函數(shù),則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=m+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為$ρ=4cos({θ-\frac{π}{6}})$.
(1)寫出曲線C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P,Q分別在C1,C2上運(yùn)動(dòng),若|PQ|的最小值為1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}為等差數(shù)列,a1=2,{an}的前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4對(duì)任意的n∈N*恒成立.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)是否存在非零整數(shù)λ,使不等式sin$\frac{{a}_{n}π}{4}$<$\frac{1}{λ(1-\frac{1}{{a}_{1}})(1-\frac{1}{{a}_{2}})…(1-\frac{1}{{a}_{n}})\sqrt{{a}_{n}+1}}$對(duì)一切n∈N*都成立?若存在,求出λ的值;若不存在,說明理由.
(3)各項(xiàng)均為正整數(shù)的無窮等差數(shù)列{cn},滿足c39=a1007,且存在正整數(shù)k,使c1,c39,ck成等比數(shù)列,若數(shù)列{cn}的公差為d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若$\frac{1}{z}$=$\frac{1}{{z}_{1}}$+$\frac{1}{{z}_{2}}$,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin300°+cos390°+tan(-135°)=( 。
A.$\sqrt{3}$-1B.1C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列滿足:${a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}+1,({n∈{N^*}})$,若${b_{n+1}}=({n-λ})({\frac{1}{a_n}+1})$,b1=-λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為λ<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案