欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.函數(shù)f(x)=ax3-x2+x-6在(-∞,+∞)上既有極大值又有極小值,則a的取值范圍為( 。
A.a>0B.a<0C.$a>\frac{1}{3}$D.$a<\frac{1}{3}$且a≠0

分析 求出導(dǎo)函數(shù),根據(jù)函數(shù)在區(qū)間(-∞,+∞)內(nèi)既有極大值,又有極小值,導(dǎo)函數(shù)為0的方程有不等的實(shí)數(shù)根,可求實(shí)數(shù)a的取值范圍.

解答 解:函數(shù)f(x)=ax3-x2+x-6,
則導(dǎo)函數(shù):f′(x)=3ax2-2x+1,
∵函數(shù)f(x)=ax3-x2+x-6既有極大值又有極小值,
∴a≠0,且△=4-12a>0,∴a<$\frac{1}{3}$且a≠0.
故選:D.

點(diǎn)評 本題的考點(diǎn)是函數(shù)在某點(diǎn)取得極值的條件,主要考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,關(guān)鍵是將問題轉(zhuǎn)化為導(dǎo)函數(shù)為0的方程有不等的實(shí)數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f′(x)-g(x)(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù))在[a,b]上有且只有兩個不同的零點(diǎn),則稱f(x)是g(x)在[a,b]上的“關(guān)聯(lián)函數(shù)”.若f(x)=$\frac{x^3}{3}-\frac{{3{x^2}}}{2}$+4x是g(x)=2x+m在[0,3]上的“關(guān)聯(lián)函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A.$({-\frac{9}{4},-2}]$B.[-1,0]C.(-∞,-2]D.$({-\frac{9}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知z1=5+10i,z2=3-4i,$\frac{1}{z}=\frac{1}{z_1}+\frac{1}{{|{z_2}|}}$,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A為橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1上的動點(diǎn),MN為圓(x-1)2+y2=1的一條直徑,則AM•AN的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\frac{1}{a}$<$\frac{1}$<0,則下列不等式中,正確的不等式有(  )
①a+b<ab   ②|a|<|b|③a<b   ④a2+b2+2a-2b+2>0.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,A、B、C所對的邊分別是a、b、c,若a•cosC+c•cosA=2b•cosB.
(1)求B的大小;          
(2)若a+c=$\sqrt{10}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將3個大小形狀完全相同但顏色不同的小球放入3個盒子中,恰有一個盒子是空的概率是( 。
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,直線l為一森林的邊界,AC⊥l,AC=6,B為AC的中點(diǎn).野兔與狼分別于A、B同時勻速奔跑,其中野兔的速度是狼的兩倍.如果狼比野兔提前或同時跑到某一點(diǎn),則就認(rèn)為野兔在這點(diǎn)能被狼抓。巴檬茄刂鳤D直線奔跑的.問直線l上的點(diǎn)D處在什么位置時,野兔在AD上不可能被狼抓?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點(diǎn)P(x,y)滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,O為坐標(biāo)原點(diǎn),則x2+y2的最小值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案