分析 由條件利用三角恒等變換化簡(jiǎn)函數(shù)f(x)的解析式,再利用正弦函數(shù)的周期性、單調(diào)性、定義域和值域,得出結(jié)論
解答 解:由函數(shù)f(x)=sin($\frac{π}{3}$+ωx)+cos(ωx-$\frac{π}{6}$)=sin$\frac{π}{3}$cosωx+cos$\frac{π}{3}$sinωx+cosωxcos$\frac{π}{6}$+sinωxsin$\frac{π}{6}$
=sinωx+$\sqrt{3}$cosωx=2sin(ωx+$\frac{π}{3}$),
(1)由f(x)的最小正周期為$\frac{2π}{ω}$=π,求得ω=2,f(x)=2sin(2x+$\frac{π}{3}$).
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,
故函數(shù)y=f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
(3)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$],則2x+$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
故當(dāng)2x+$\frac{π}{3}$=-$\frac{π}{3}$時(shí),函數(shù)f(x)取得最小值為-$\sqrt{3}$,當(dāng) 2x+$\frac{π}{3}$=$\frac{π}{2}$時(shí),f(x)取得最大值為2,
故y=f(x)的值域?yàn)閇-$\sqrt{3}$,2].
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性、定義域和值域,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [1,+∞) | B. | (-∞,-1] | C. | (-∞,-1]∪[1,+∞) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com