分析 利用“裂項(xiàng)求和”與不等式的性質(zhì)即可得出.
解答 解:∵an=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,
∴Sn=a1+a2+…+an=$(1-\frac{1}{\sqrt{2}})$+$(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}})$+…+$(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})$
=1-$\frac{1}{\sqrt{n+1}}$,
使Sn>$\frac{2}{3}$成立,即1-$\frac{1}{\sqrt{n+1}}$>$\frac{2}{3}$,
化為:$\frac{1}{3}>$$\frac{1}{\sqrt{n+1}}$,
解得:n>8.
∴使Sn>$\frac{2}{3}$成立的n的最小值為9.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”與不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | m<0或m≥1 | B. | m≥1 | C. | m>1 | D. | 以上答案都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 至少有一個(gè)成立 | B. | 至多有一個(gè)成立 | C. | 都不成立 | D. | 可以同時(shí)成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | -3 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com