欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)正2n+1(n∈N*)邊形內(nèi)接于一個(gè)圓,考慮所有以這2n+1邊形的頂點(diǎn)為頂點(diǎn)的三角形,其中有多少個(gè)三角形的內(nèi)部含該圓的圓心?

解析:如圖,先取定一個(gè)頂點(diǎn)A,將其它2n個(gè)頂點(diǎn)順次標(biāo)為1,2,…,2n.

設(shè)以A,i(1≤i≤n)為一個(gè)端點(diǎn)的兩條直徑的另一個(gè)端點(diǎn)分別為B,C(注意:B,C不可能是正2n+1邊形的頂點(diǎn)),則上有i個(gè)頂點(diǎn),這些頂點(diǎn)而且只有這些頂點(diǎn)與A,i構(gòu)成銳角三角形.于是,以A,i(1≤i≤n)為頂點(diǎn)的銳角三角形有(個(gè)).因?yàn)锳點(diǎn)有2n+1種取法,且在和(2n+1)×中每個(gè)三角形重復(fù)出三次,所以共有n=n(n+1)(2n+1)個(gè)

三角形內(nèi)部含圓心O.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱周期.例如當(dāng)xn=2時(shí),{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時(shí),{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時(shí)為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項(xiàng)和Sn,試問(wèn)是否存在p、q,使對(duì)任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦東新區(qū)一模)定義數(shù)列{xn},如果存在常數(shù)p,使對(duì)任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動(dòng)數(shù)列”.
(1)設(shè)an=2n-1,bn=(-
1
2
)n
,n∈N*,判斷{an}、{bn}是否為“p-擺動(dòng)數(shù)列”,并說(shuō)明理由;
(2)已知“p-擺動(dòng)數(shù)列”{cn}滿足cn+1=
1
cn+1
,c1=1,求常數(shù)p的值;
(3)設(shè)dn=(-1)n•(2n-1),且數(shù)列{dn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn}是“p-擺動(dòng)數(shù)列”,并求出常數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦東新區(qū)一模)定義數(shù)列{xn},如果存在常數(shù)p,使對(duì)任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動(dòng)數(shù)列”.
(1)設(shè)an=2n-1,bn=(-
12
)n
,n∈N*,判斷{an}、{bn}是否為“p-擺動(dòng)數(shù)列”,并說(shuō)明理由;
(2)設(shè)數(shù)列{cn}為“p-擺動(dòng)數(shù)列”,c1>p,求證:對(duì)任意正整數(shù)m,n∈N*,總有c2n<c2m-1成立;
(3)設(shè)數(shù)列{dn}的前n項(xiàng)和為Sn,且Sn=(-1)n•n,試問(wèn):數(shù)列{dn}是否為“p-擺動(dòng)數(shù)列”,若是,求出p的取值范圍;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)已知a為正實(shí)數(shù),n為自然數(shù),拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有
f(n)-1
f(n)+1
n
n+1
成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
6•
f(1)-f(n+1)
f(0)-f(1)
的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案