D
分析:已知函數(shù)y=f(x)的圖象為折線ABC,設(shè)f
1(x)=f(x),f
n+1 (x)=f[f
n(x)],可以根據(jù)圖象與x軸的交點進行判斷,求出f
1(x)的解析式,可得與x軸有兩個交點,f
2(x)與x軸有4個交點,以此來進行判斷;
解答:函數(shù)y=f(x)的圖象為折線ABC,設(shè)f
1(x)=f(x),f
n+1 (x)=f[f
n(x)],
由圖象可知f(x)為偶函數(shù),關(guān)于y軸對稱,所以只需考慮x≥0的情況即可:
由圖f
1(x)是分段函數(shù),
f
1(x)=f(x)=

,是分段函數(shù),
∵f
2(x)=f(f(x)),
當0≤x≤

,f
1(x)=4x-1,可得-1≤f(x)≤1,仍然需要進行分類討論:
①0≤f(x)≤

,可得0<x≤

,此時f
2(x)=f(f
1(x))=4(4x-1)=16x-4,
②

≤f(x)≤1,可得

<x≤

,此時f
2(x)=f(f
1(x))=-4(4x-1)=-16x+4,
可得與x軸有2個交點;
當

≤x≤1,時,也分兩種情況,此時也與x軸有兩個交點;
∴f
2(x)在[0,1]上與x軸有4個交點;
那么f
3(x)在[0,1]上與x軸有6個交點;
∴f
4(x)在[0,1]上與x軸有8個交點,同理在[-1.0]上也有8個交點;
故選D;
點評:此題主要考查函數(shù)的圖象問題,以及分段函數(shù)的性質(zhì)及其圖象,是一道好題;