【題目】在古代,直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”.三國時期吳國數(shù)學(xué)家趙爽用“弦圖”( 如圖) 證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實.”這里的“實”可以理解為面積.這個證明過程體現(xiàn)的是這樣一個等量關(guān)系:“兩條直角邊的乘積是兩個全等直角三角形的面積的和(朱實二 ),4個全等的直角三角形的面積的和(朱實四) 加上中間小正方形的面積(黃實) 等于大正方形的面積(弦實)”. 若弦圖中“弦實”為16,“朱實一”為
,現(xiàn)隨機向弦圖內(nèi)投入一粒黃豆(大小忽略不計),則其落入小正方形內(nèi)的概率為( )
![]()
A.
B.
C.
D. ![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點O是四邊形
內(nèi)一點,判斷結(jié)論:“若
,則該四邊形必是矩形,且O為四邊形
的中心”是否正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長度為
的線段
的兩個端點
、
分別在
軸和
軸上運動,動點
滿足
,設(shè)動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)過點
且斜率不為零的直線
與曲線
交于兩點
、
,在
軸上是否存在定點
,使得直線
與
的斜率之積為常數(shù).若存在,求出定點
的坐標以及此常數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知橢圓
的離心率為
,過點
的直線
交橢圓
與
兩點,
,且當直線
垂直于
軸時,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
,求弦長
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列
的前
項和為
,且滿足
,
,
.各項均為正數(shù)的等比數(shù)列
滿足
,
.
(1)求數(shù)列
、
的通項公式;
(2)若
,數(shù)列
的前
項和
.
①求
;
②若對任意
,
,均有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(I) 當
時,求函數(shù)
的單調(diào)區(qū)間;
(II) 當
時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,圓
的方程為
,直線
的極坐標方程為
.
(I )寫出
的極坐標方程和
的平面直角坐標方程;
(Ⅱ) 若直線
的極坐標方程為
,設(shè)
與
的交點為
與
的交點為
求
的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com