欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知點A(-1,-1),B(1,3),C(1,5),D(2,7).
(1)向量$\overrightarrow{AB}$與$\overrightarrow{CD}$平行嗎?
(2)向量$\overrightarrow{AC}$與$\overrightarrow{AB}$平行嗎?

分析 (1)根據(jù)題意,由A、B、C、D四點的坐標計算可得向量$\overrightarrow{AB}$、$\overrightarrow{CD}$的坐標,進而分析可得$\overrightarrow{AB}$=2$\overrightarrow{CD}$,可得結(jié)論;
(2)根據(jù)題意,由A、B、C、D四點的坐標計算可得向量$\overrightarrow{AC}$、$\overrightarrow{CD}$的坐標,進而有2×4≠6×2,可以判定向量$\overrightarrow{AC}$與$\overrightarrow{AB}$不平行.

解答 解:(1)根據(jù)題意,A(-1,-1),B(1,3),C(1,5),D(2,7).
則$\overrightarrow{AB}$=(2,4),$\overrightarrow{CD}$=(1,2);
有$\overrightarrow{AB}$=2$\overrightarrow{CD}$;
即向量$\overrightarrow{AB}$與$\overrightarrow{CD}$平行;
(2)根據(jù)題意,A(-1,-1),B(1,3),C(1,5),D(2,7).
則$\overrightarrow{AC}$=(2,6),$\overrightarrow{AB}$=(2,4);
有2×4≠6×2,
故向量$\overrightarrow{AC}$與$\overrightarrow{AB}$不平行.

點評 本題考查向量平行的坐標計算,關鍵是利用點的坐標求出向量的坐標.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知全集U={x|x=2n,n∈Z},集合A={-2,0,2,4},B={-2,0,4,6,8},則∁UA)∩B=(  )
A.{2,8}B.{6,8}C.{2,4,6}D.{2,4,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知A={-1,0,1,2,3},$B=\{x|\frac{1}{{\sqrt{x-1}}}≥1\}$,則A∩B的元素個數(shù)為( 。
A.2B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知向量$\overrightarrow{AB}=({0,2,1})$,$\overrightarrow{AC}=({-1,1,-2})$,則平面ABC的一個法向量可以是( 。
A.(3,-1,-2)B.(-4,2,2)C.(5,1,-2)D.(5,-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.同時拋擲兩枚均勻地骰子,所得點數(shù)之和為8的概率是$\frac{5}{36}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設全集U=R,已知$A=\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\},B=\left\{{x\left|{|{x-1}|<2}\right.}\right\}$,則A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知a>0且a≠1,設命題p:函數(shù)y=loga(x+1)在區(qū)間(-1,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+(2a-3)x+1與x軸有兩個不同的交點.如果p或q為真命題,那么a的取值集合是怎樣的呢?并寫出求解過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某市在“國際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,遠離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(Ⅰ)求隨機抽取的市民中年齡在[30,40)的人數(shù);
(Ⅱ)試根據(jù)頻率分布直方圖估計市民的平均年齡;
(Ⅲ)從不小于40歲的人中按年齡段分層抽樣的方法隨機  抽取5人,再從得到的5人中抽到2人作為本次活動的獲獎者,記X為年齡在[50,60)年齡段的人數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…+\frac{{{x^{2013}}}}{2013}$,$g(x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}+…$$-\frac{{{x^{2013}}}}{2013}$,設函數(shù)F(x)=f(x+1)•g(x-1),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案