如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點(diǎn)E、F分別是棱PB、邊CD的中點(diǎn).(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD
(1)要證明線面垂直,關(guān)鍵是要通過線線垂直的證明,結(jié)合判定定理來得到,關(guān)鍵點(diǎn) 一步是AD⊥AB.
(2)要證明線面平行,關(guān)鍵是要通過線線平行的證明,結(jié)合判定定理來得到,通過做適當(dāng)?shù)妮o助線,結(jié)合三角形的中位線平移,得到EF∥DQ.
【解析】
試題分析:證明:(1)因?yàn)?i>PD⊥面ABCD,
![]()
所以PD⊥AB. 2分
在平面ABCD中,D作DM//AB,則由AB=12得
DM=12.又BC=10,AD=
BC,則AD=5,從而CM=5.
于是在△CDM中,CD=13,DM=12,CM=5,則
由
及勾股定理逆定理得DM⊥BC .
又DM//AB,BC//AD,所以AD⊥AB.
又PD∩AD=D,所以AB⊥面PAD. 6分
(2)[證法一] 取AB的中點(diǎn)N,連結(jié)EN、FN.
因?yàn)辄c(diǎn)E是棱PB的中點(diǎn),所以在△ABP中,EN//
PA.
又PAÌ面PAD,所以EN//面PAD. 8分
因?yàn)辄c(diǎn)F分別是邊CD的中點(diǎn),所以在梯形ABCD中,FN//AD.
又ADÌ面PAD,所以FN//面PAD. 10分
又EN∩FN=N,PA∩DA=A,所以面EFN//面PAD. 12分
又EFÌ面EFN,則EF//面PAD. 14分
[證法二] 延長CD,BA交于點(diǎn)G.
連接PG,EG,EG與PA交于點(diǎn)Q.
由題設(shè)AD∥BC,且AD=
BC,所以CD=DG,BA
=AG,即點(diǎn)A為BG的中點(diǎn).
又因?yàn)辄c(diǎn)E為棱PB的中點(diǎn),所以EA為△BPG的中位線,即EA∥PG,且EA:PG=1:2,故有EA:PG=EQ:QG=1:2. 10分
又F是邊CD的中點(diǎn),并由CD=DG,則有FD:DG
=1:2. 12分
在△GFE中,由于EQ:QG=1:2,FD:DG=1:2,所以EF∥DQ.
又EFË面PAD,而DQÌ面PAD,所以EF∥面PAD. 14分
考點(diǎn):空間中線面位置關(guān)系
點(diǎn)評:解決該試題的關(guān)鍵是熟練的結(jié)合線面平行和垂直的判定定理,找到線線的平行和垂直關(guān)系,屬于基礎(chǔ)題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com