分析 (1)首先利用三角函數(shù)的恒等變換把函數(shù)的關(guān)系式變性成正弦型函數(shù),進(jìn)一步求出函數(shù)的值.
(2)利用正弦型函數(shù)的解析式,進(jìn)一步利用函數(shù)的定義域求出函數(shù)的值域,最后利用整體思想求出函數(shù)的單調(diào)區(qū)間.
解答 解:(1)$f(x)=sin(2x+\frac{π}{4})+cos(2x-\frac{π}{4})$
=2($\frac{\sqrt{2}}{2}sin2x+\frac{\sqrt{2}}{2}cos2x$)
=2sin(2x+$\frac{π}{4}$),
所以:f($\frac{π}{2}$)=2sin(π+$\frac{π}{4}$)=-$\sqrt{2}$.
(2)由于:x∈R,且f(x)=2sin(2x+$\frac{π}{4}$),
所以函數(shù)的值域?yàn)椋篺(x)∈[-2,2].
令:$-\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤2kπ+\frac{π}{2}$
整理得:$-\frac{3π}{8}+kπ≤x≤kπ+\frac{π}{8}$,(k∈Z)
所以函數(shù)的單調(diào)遞增區(qū)間為:[$-\frac{3π}{8}+kπ,kπ+\frac{π}{8}$](k∈Z)
點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):三角函數(shù)的關(guān)系式的恒等變換,利用正弦型函數(shù)的定義域求函數(shù)的值域,利用整體思想求函數(shù)的單調(diào)區(qū)間.主要考查學(xué)生的應(yīng)用能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 70 | B. | 64 | C. | 48 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 cm | B. | 6 cm | C. | 7 cm | D. | 8 cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{9+2\sqrt{3}+\sqrt{5}}}{2}$ | B. | $\frac{{9+2\sqrt{3}}}{2}$ | C. | $\frac{{9+2\sqrt{5}}}{2}$ | D. | $\frac{{11+\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{4}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com