欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(理)數(shù)列{an}滿足a1=1 且8an+1an-16an+1+2an+5=0(n≥1)記bn=
1
an-
1
2
(n≥1)

(1)求b1,b2,b3,b4的值.
(2)求{bn}、{anbn}的通項(xiàng)公式.
(3)求{anbn}的前n項(xiàng)和Sn
(1)由bn=
1
an-
1
2
an=
1
bn
+
1
2

代入8an+1an-16an+1+2an+5=0(n≥1),得8(
1
bn+1
+
1
2
)(
1
bn
+
1
2
)-16(
1
bn+1
+
1
2
)+2(
1
bn
+
1
2
)+5=0,
化簡(jiǎn)得bn+1=2bn-
4
3
,則bn+1-
4
3
=2(bn-
4
3
),
所以{bn-
4
3
}為等比數(shù)列,其公比為2,首項(xiàng)為b1-
4
3
=
1
a1-
1
2
-
4
3
=
2
3

所以bn-
4
3
=
2
3
•2n-1=
2n
3
,
所以bn=
2n
3
+
4
3

所以b1=
2
3
+
4
3
=2,b2=
22
3
+
4
3
=
8
3
,b3=
23
3
+
4
3
=4,b4=
24
3
+
4
3
=
20
3
;
(2)由(1)求解過(guò)程可知bn=
2n
3
+
4
3

an=
1
bn
+
1
2
=
3
2n+4
+
1
2
,
所以anbn=(
3
2n+4
+
1
2
)(
2n
3
+
4
3
)=1+
2n-1+2
3
=
5
3
+
2n-1
3
;
(3)Sn=(
5
3
+
1
3
)+(
5
3
+
2
3
)+…+(
5
3
+
2n-1
3
)=
5
3
n+
1
3
(1-2n)
1-2
=
5
3
n+
2n-1
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,f(-2)=0,且當(dāng)x∈(1,3)時(shí),有f(x)≤
1
8
(x+2)2
成立.
(1)求f(x)的表達(dá)式.
(2)g(x)=4f′(x)-sinx-2數(shù)列{an}滿足:an+1=g(an),0<a1<1,n=1,2,3,證明:(Ⅰ)0<an+1<an<1;(Ⅱ)an+1
1
6
an
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)數(shù)列{an},若對(duì)任意的k∈N*,滿足
a2k+1
a2k-1
=q1,
a2k+2
a2k
=q2
 &(q1,q2
是常數(shù)且不相等),則稱數(shù)列{an}為“跳躍等比數(shù)列”,則下列關(guān)于“跳躍等比數(shù)列”的命題:
(1)若數(shù)列{an}為“跳躍等比數(shù)列”,則滿足bk=a2k•a2k-1(k∈N*)的數(shù)列{bn}是等比數(shù)列; 
(2)若數(shù)列{an}為“跳躍等比數(shù)列”,則滿足bk=
a2k
a2k-1
(k∈N*)
的數(shù)列{bn}是等比數(shù)列; 
(3)若數(shù)列{an}為等比數(shù)列,則數(shù)列{(-1)nan}是“跳躍等比數(shù)列”;  
(4)若數(shù)列{an}為等比數(shù)列,則滿足bn=
ak+1ak
,&n=2k-1
ak+1
ak
,&n=2k
(k∈N*)
的數(shù)列{bn}是“跳躍等比數(shù)列”;
(5)若數(shù)列{an}和{bn}都是“跳躍等比數(shù)列”,則數(shù)列{an•bn}也是“跳躍等比數(shù)列”;其中正確的命題個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)數(shù)列{an}滿足,,且a1a2+a2a3+…+anan+1=na1an+1對(duì)于任何正整數(shù)n都成立,則的值為                                                                  (  )

A.5050             B.5048              C.5044             D.5032

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)數(shù)列{an}滿足條件:a1=a(a>2),且an+1=(n∈N*).

(1)證明:an>2;

(2)證明:a1+a2+…+an<2(n+a-2);

(3)若xn=,求數(shù)列{xn}的通項(xiàng)公式

(文)已知數(shù)列{an}和{bn}滿足:a1=,且an+bn=1,bn+1=(n∈N*).

(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;

(2)設(shè)Sn=a1+a2+a2a3+…+anan+1.若對(duì)任意的n∈N*,不等式kSn>bn恒成立,求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)二模理)數(shù)列{an}滿足。當(dāng)an取得最大值時(shí)n等于                                                                     (    )

       A.4                                                       B.5                        

       C.6                                                       D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案