(本題15分)如圖,AC 是圓 O 的直徑,點(diǎn) B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點(diǎn) M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.
![]()
(1)見(jiàn)解析;(2)
.
【解析】
試題分析:(1)本小題易建立空間直角坐標(biāo)系,易于用向量法求解,建系后可求出點(diǎn)E,M,B,F(xiàn)的坐標(biāo),然后利用
證明即可.
(2)由于EA垂直平面ABC,所以
可做為平面ABC的法向量,然后再求出平面BEF的法向量
設(shè)二面角為
求解即可.
(1)
.
如圖,以
為坐標(biāo)原點(diǎn),垂直于
、
、
所在的直線為
軸建立空間直角坐標(biāo)系.由已知條件得
,
![]()
.
由
,
得
,
. ……………6分
(2)由(1)知
.
設(shè)平面
的法向量為
,
由
得
,]
令
得
,
,
由已知
平面
,所以取面
的法向量為
,
設(shè)平面
與平面
所成的銳二面角為
,
則
,
平面
與平面
所成的銳二面角的余弦值為
..
考點(diǎn):利用空間向量法證明異面直線垂直,求二面角.
點(diǎn)評(píng):利用空間向量法證明兩直線垂直,就是證明兩直線的方向向量的數(shù)量積為零即可.
在利用向量法求二面角時(shí),要先求(或找)出兩個(gè)面的法向量,然后求法向量的夾角即可.
還要注意法向量的夾角可能與二面角相等也可能互補(bǔ),要注意從圖形上觀察.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題15分)如圖,橢圓
長(zhǎng)軸端點(diǎn)為
,![]()
為橢圓中心,
為橢圓的右焦點(diǎn),且![]()
,
.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)記橢圓的上頂點(diǎn)為
,
直線
交橢圓于
兩點(diǎn),問(wèn):是否存在直線
,使點(diǎn)
恰為
的垂心?若存在,求出
直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分15分)
如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為
的半圓形空地,
外的地方種草,
的內(nèi)接正方形
為一水池,其余地方種花.若
,設(shè)
的面積為
,正方形
的面積為
,將比值
稱為“規(guī)劃合理度”.
(1)試用
表示
和
.(2)當(dāng)
變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三回頭考聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題15分)如圖,在四棱錐
中,
底面
,
,
,
,
,
是
的中點(diǎn)。
![]()
(Ⅰ)證明:
;
(Ⅱ)證明:
平面
;
(Ⅲ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題15分)
如圖,直角三角形
的頂點(diǎn)坐標(biāo)
,直角頂點(diǎn)
,頂點(diǎn)
在
軸上,點(diǎn)
為線段
的中點(diǎn).
(1)求
邊所在直線方程;
(2)
為直角三角形
外接圓的圓心,求圓
的方程;
(3)直線
過(guò)點(diǎn)
且傾斜角為
,求該直線被圓
截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題15分)
如圖,直角三角形
的頂點(diǎn)坐標(biāo)
,直角頂點(diǎn)
,頂點(diǎn)
在
軸上,點(diǎn)
為線段
的中點(diǎn).
(1)求
邊所在直線方程;
(2)
為直角三角形
外接圓的圓心,求圓
的方程;
(3)直線
過(guò)點(diǎn)
且傾斜角為
,求該直線被圓
截得的弦長(zhǎng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com