| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{8}$ | D. | $\frac{5}{8}$ |
分析 根據(jù)程序框圖進行模擬計算,令輸出值大于等于55得到輸入值的范圍,利用幾何概型的概率公式求出輸出的x不小于55的概率.
解答 解:設實數(shù)x∈[1,9],
經(jīng)過第一次循環(huán)得到x=2x+1,n=2
經(jīng)過第二循環(huán)得到x=2(2x+1)+1,n=3
經(jīng)過第三次循環(huán)得到x=2[2(2x+1)+1]+1,n=3此時輸出x
輸出的值為8x+7
令8x+7≥55,得x≥6
由幾何概型得到輸出的x不小于55的概率為=$\frac{9-6}{9-1}$=$\frac{3}{8}$.
故選:C
點評 解決程序框圖中的循環(huán)結構時,一般采用先根據(jù)框圖的流程寫出前幾次循環(huán)的結果,進行模擬計算是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ∅ | B. | {x|-1≤x<2} | C. | {x|-2≤x<-1} | D. | {x|2≤x<3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一實數(shù)λ使$\overrightarrow{a}$=λ$\overrightarrow$ | |
| B. | “若θ=$\frac{π}{3}$,則cosθ=$\frac{1}{2}$”的否命題為“若θ≠$\frac{π}{3}$,則cosθ≠$\frac{1}{2}$” | |
| C. | 已知向量$\overrightarrow{a}$、$\overrightarrow$為非零向量,則“$\overrightarrow{a}$、$\overrightarrow$的夾角為鈍角”的充要條件是“$\overrightarrow{a}$$•\overrightarrow$<0” | |
| D. | 若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 命題p∨q是假命題 | B. | 命題p∧q是真命題 | ||
| C. | 命題p∧(¬q)是真命題 | D. | 命題p∨(¬q)是假命題 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com