| A. | 平面α與平面β所成的(銳)二面角為45° | |
| B. | 平面α與平面β垂直 | |
| C. | 平面α與平面β平行 | |
| D. | 平面α與平面β所成的(銳)二面角為60° |
分析 設(shè)P1是點P在α內(nèi)的射影,點P2是點P在β內(nèi)的射影.根據(jù)題意點P1在β內(nèi)的射影與P2在α內(nèi)的射影重合于一點,由此可得四邊形PP1Q1P2為矩形,且∠P1Q1P2是二面角α-l-β的平面角,根據(jù)面面垂直的定義可得平面α與平面β垂直,得到本題答案.
解答 解:設(shè)P1=fα(P),則根據(jù)題意,得點P1是過點P作平面α垂線的垂足
∵Q1=fβ[fα(P)]=fβ(P1),
∴點Q1是過點P1作平面β垂線的垂足
同理,若P2=fβ(P),得點P2是過點P作平面β垂線的垂足
因此Q2=fα[fβ(P)]表示點Q2是過點P2作平面α垂線的垂足
∵對任意的點P,恒有PQ1=PQ2,
∴點Q1與Q2重合于同一點
由此可得,四邊形PP1Q1P2為矩形,且∠P1Q1P2是二面角α-l-β的平面角
∵∠P1Q1P2是直角,∴平面α與平面β垂直
故選:B
點評 本題給出新定義,要求我們判定平面α與平面β所成角大小,著重考查了線面垂直性質(zhì)、二面角的平面角和面面垂直的定義等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$(a+b) | B. | $\frac{2ab}{a+b}$ | C. | $\frac{1}{2}$($\frac{1}{a}$+$\frac{1}$) | D. | $\sqrt{ab}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com