已知a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,…
(1)證明:數(shù)列{lg(1+an)}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.
【答案】
分析:(1)由點(diǎn)(a
n,a
n+1)在函數(shù)f(x)=x
2+2x的圖象上,則a
n+1=a
n2+2a
n,
即a
n+1+1=a
n2+2a
n+1=(a
n+1)
2>0,即

(常數(shù)),從而得證.
(2)由(1)得知{lg(1+a
n)}是公比為2且首項(xiàng)為lg(1+a
1)=lg3的等比數(shù)列,
即可得

化簡(jiǎn)得數(shù)列{a
n}的通項(xiàng)公式.
解答:解:(1)∵點(diǎn)(a
n,a
n+1)在函數(shù)f(x)=x
2+2x的圖象上,∴a
n+1=a
n2+2a
n,
∴a
n+1+1=a
n2+2a
n+1=(a
n+1)
2>0,∴l(xiāng)g(a
n+1+1)=lg(a
n+1)
2=2lg(a
n+1)
即:

,∴{lg(1+a
n)}是公比為2的等比數(shù)列.
(2)由(1)知{lg(1+a
n)}是公比為2且首項(xiàng)為lg(1+a
1)=lg3的等比數(shù)列,
∴

,則
點(diǎn)評(píng):此題考查等比數(shù)列的證明方法即定義法.定義法關(guān)鍵在于如何構(gòu)造第n+1項(xiàng)與第n項(xiàng)之間的比值關(guān)系,注意其統(tǒng)一性.