欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若a<b,d<c,并且(c-a)(c-b)<0,(d-a)(d-b)>0,則a、b、c、d的大小關(guān)系是(    )

A..d<a<c<b                   B.a<c<b<d

C.a<d<b<c                    D.a<d<c<b

思路分析:(c-a)(c-b)<0說(shuō)明(c-a)與(c-b)不同號(hào),(d-a)(d-b)>0說(shuō)明(c-a)與(c-b)同號(hào),又由于a<b,d<c,所以有d<a<c<b.

答案:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個(gè)“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對(duì)任意x1∈[a,b],都有f(x1)=c,且對(duì)任意x2∈D,當(dāng)x2∉[a,b]時(shí),f(x2)>c恒成立,則稱(chēng)函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(1)判斷函數(shù)f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說(shuō)明理由;
(2)若函數(shù)g(x)=x+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),求n的值.
(3)設(shè)f(x)是(1)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中,圓O的方程為x2+y2=1.
(1)若直線l與圓O切于第一象限且與坐標(biāo)軸交于點(diǎn)A,B,當(dāng)|AB|最小時(shí),求直線l的方程;
(2)若A,B是圓O與x軸的交點(diǎn),C是圓在直徑AB的上方的任意一點(diǎn),過(guò)該點(diǎn)作CD⊥AB交圓O于點(diǎn)D,當(dāng)點(diǎn)C在圓O上移動(dòng)時(shí),求證:∠OCD的角平分線經(jīng)過(guò)圓O上的一個(gè)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>b>c,則
1
a-b
+
1
b-c
4
a-c

證明:因?yàn)椋╝-c)(
1
a-b
+
1
b-c
)
=(a-b+b-c)(
1
a-b
+
1
b-c
)
=2+
b-c
a-b
+
a-b
b-c

∵a>b>c∴a-b>0,b-c>0;
b-c
a-b
+
a-b
b-c
≥2
b-c
a-b
a-b
b-c
=2
∴2+
b-c
a-b
+
a-b
b-c
≥4∴(a-c)(
1
a-b
+
1
b-c
)
≥4
     因?yàn)閍>c所以a-c>0
     所以
1
a-b
+
1
b-c
4
a-c

類(lèi)比上述命題及證明思路,回答以下問(wèn)題:
①若a>b>c>d,比較
1
a-b
+
1
b-c
+
1
c-d
9
a-d
的大小,并證明你的猜想;
②若a>b>c>d>e,且
1
a-b
+
1
b-c
+
1
c-d
+
1
d-e
m
a-e
恒成立,試猜想m的最大值,并寫(xiě)出猜想過(guò)程,不要求證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?
(3)如圖:直線l與兩個(gè)“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

查看答案和解析>>

同步練習(xí)冊(cè)答案