【題目】大家知道,莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如下:
閱讀過(guò)莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率;
(Ⅱ)對(duì)莫言作品閱讀超過(guò)75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān)?
非常了解 | 一般了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:K2=![]()
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】解:(Ⅰ)由抽樣調(diào)查閱讀莫言作品在50篇以上的頻率為
=
,
據(jù)此估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率約為P=![]()
(Ⅱ)
非常了解 | 一般了解 | 合計(jì) | |
男生 | 30 | 20 | 50 |
女生 | 25 | 25 | 50 |
合計(jì) | 55 | 45 | 100 |
根據(jù)列聯(lián)表數(shù)據(jù)得
,
所以沒(méi)有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān).
【解析】(Ⅰ)求出閱讀莫言作品在50篇以上的頻率,估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率;
(Ⅱ)利用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行判斷.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(其中a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說(shuō)明理由.
(2)若
,試判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性,并用函數(shù)單調(diào)性定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系
的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.若直線
的參數(shù)方程為
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(I)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(II)設(shè)直線
與曲線
相交于
兩點(diǎn),若
點(diǎn)的直角坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)
、
兩點(diǎn),且圓心在直線
上.
(1)求圓C的方程;
(2)若直線
經(jīng)過(guò)點(diǎn)
且與圓C相切,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】遼寧號(hào)航母紀(jì)念章從2012年10月5日起開始上市,通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每
枚的市場(chǎng)價(jià)
(單位:元)與上市時(shí)間
(單位:天)的數(shù)據(jù)如下:
上市時(shí)間 |
|
|
|
市場(chǎng)價(jià) |
|
|
|
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)
與上市時(shí)間
的變化關(guān)系:①
;②
;③
;
(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)設(shè)你選取的函數(shù)為
,若對(duì)任意實(shí)數(shù)
,關(guān)于
的方程
恒有個(gè)想異實(shí)數(shù)根,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)f(x)=2a2x-1-1的圖象過(guò)定點(diǎn)(
,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x+1),若f(a)=-2則實(shí)數(shù)a=-1或2.
③若loga
>1,則a的取值范圍是(
,1);
④若對(duì)于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對(duì)稱;
⑤對(duì)于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f(
)≥![]()
其中所有正確命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的標(biāo)準(zhǔn)方程為
,
為圓
上的動(dòng)點(diǎn),直線
的方程為
,動(dòng)點(diǎn)
在直線
上.
(1)求
的最小值,并求此時(shí)點(diǎn)
的坐標(biāo);
(2)若
點(diǎn)的坐標(biāo)為
,過(guò)
作直線與圓
交于
,
兩點(diǎn),當(dāng)
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形
.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形
(點(diǎn)
在曲線段
上,點(diǎn)
在線段
上).已知
,
,其中曲線段
是以
為頂點(diǎn),
為對(duì)稱軸的拋物線的一部分.
![]()
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段
與線段
的方程;
(2)求該廠家廣告區(qū)域
的最大面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com