【題目】已知函數(shù)
,(其中
為
在點
處的導(dǎo)數(shù),
為常數(shù)).
(1)求
的值;
(2)求函數(shù)
的單調(diào)區(qū)間;
(3)設(shè)函數(shù)
,若函數(shù)
在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍。
【答案】(1)
(2)![]()
【解析】試題分析: (1)對
求導(dǎo),令
,即可求出
;(2)將
代入
中,求導(dǎo)后,分別令
,求出
的范圍,得到單調(diào)增區(qū)間,減區(qū)間;(3)由已知有
恒成立,且
,得出
,令
,由
,求出
的范圍.
試題解析:(1)
(2)![]()
當(dāng)
,即
或
時,函數(shù)
單調(diào)遞增;
當(dāng)
,即
時,函數(shù)
單調(diào)遞減。
∴
單調(diào)遞增區(qū)間為
和![]()
單調(diào)遞減區(qū)間為
(3)
∵
在區(qū)間
上單調(diào)遞增,
∴
恒成立.
∵
∴![]()
設(shè)
則
, ∴
, ∴
答:
的取值范圍是
.
點睛:本題主要考查了導(dǎo)數(shù)的計算,導(dǎo)數(shù)在求函數(shù)單調(diào)性上的應(yīng)用,屬于中檔題.求函數(shù)在某區(qū)間為增函數(shù),一般轉(zhuǎn)化為導(dǎo)函數(shù)大于或等于零問題.第三問另解: 得出
恒成立,
,分離出常數(shù)
,即
,當(dāng)
時,
有最大值為11.所以
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某港口
處獲悉,其正東方向距離20n mile的
處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.
![]()
(1)求接到救援命令時救援船距漁船的距離;
(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若曲線
在
處的切線平行于直線
,求a的值;
(2)討論函數(shù)
的單調(diào)性;
(3) 若
,且對
時,
恒成立,求實數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(
x+φ),x∈R,A>0,0<φ<
.y=f(x)的部分圖象如圖所示,P、Q 分別為該圖象的最高點和最低點,點P的坐標(biāo)為(1,A).點R的坐標(biāo)為(1,0),∠PRQ=
. ![]()
(1)求f(x)的最小正周期以及解析式.
(2)用五點法畫出f(x)在x∈[﹣
,
]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其中A,B兩點之間的距離為5,則f(x)的解析式是( ) ![]()
A.y=2sin(
x+
)
B.y=2sin(
x+
)
C.y=2sin(
x+
)
D.y=2sin(
x+
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量
關(guān)于
的回歸方程模型,其對應(yīng)的數(shù)值如下表:
| 2 | 3 | 4 | 5 | 6 | 7 |
|
|
|
|
|
|
|
(1)請用相關(guān)系數(shù)
加以說明
與
之間存在線性相關(guān)關(guān)系(當(dāng)
時,說明
與
之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立
關(guān)于
的回歸方程并預(yù)測當(dāng)
時,對應(yīng)的
值為多少(
精確到
).
附參考公式:回歸方程
中斜率和截距的最小二乘法估計公式分別為:
,
,相關(guān)系數(shù)
公式為:
.
參考數(shù)據(jù):
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏。將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨即從中抽取了100名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.
(Ⅰ)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的
列聯(lián)表,并據(jù)此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關(guān)?
![]()
![]()
注:其中
.
![]()
(Ⅱ)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為
,在選出的6名良好等級的選手中任取一名,記其編號為
,求使得方程組
有唯一一組實數(shù)解
的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com