【題目】在直角坐標(biāo)系
中,圓
的參數(shù)方程為
(
為參數(shù)),圓
與圓
外切于原點(diǎn)
,且兩圓圓心的距離
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓
和圓
的極坐標(biāo)方程;
(2)過點(diǎn)
的直線
與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
,與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
,且
,求四邊形
面積的最大值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為矩形,平面
平面
,
,
,
為
的中點(diǎn),
為
上一點(diǎn),
交
于點(diǎn)
.
![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓
:
,長軸的右端點(diǎn)與拋物線
:
的焦點(diǎn)
重合,且橢圓
的離心率是
.
![]()
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過
作直線
交拋物線
于
,
兩點(diǎn),過
且與直線
垂直的直線交橢圓
于另一點(diǎn)
,求
面積的最小值,以及取到最小值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程和
的普通方程;
(2)
與
相交于
兩點(diǎn),設(shè)點(diǎn)
為
上異于
的一點(diǎn),當(dāng)
面積最大時,求點(diǎn)
到
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線
的參數(shù)方程為
,(
為參數(shù)).以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的極坐標(biāo)方程與曲線
的直角坐標(biāo)方程;
(2)已知與直線
平行的直線
過點(diǎn)
,且與曲線
交于
兩點(diǎn),試求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
底面
,
為直角梯形,
,
,
,
,過
點(diǎn)作平面
平行于平面
,平面
與棱
,
,
,
分別相交于點(diǎn)
,
,
,
.
![]()
(1)求
的長度;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以
、
、
、
、
、
為頂點(diǎn)的五面體中,平面
平面
,
,四邊形
為平行四邊形,且
.
![]()
(1)求證:
;
(2)若
,
,直線
與平面
所成角為
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左右焦點(diǎn)分別為
,
且
關(guān)于直線
的對稱點(diǎn)
在直線
上.
(1)求橢圓的離心率;
(2)若過焦點(diǎn)
垂直
軸的直線被橢圓截得的弦長為
,斜率為
的直線
交橢圓于
,
兩點(diǎn),問是否存在定點(diǎn)
,使得
,
的斜率之和為定值?若存在,求出所有滿足條件的
點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com