分析 (1)利用和差化積公式和二倍角公式對cos2C+cosC=1-cos(A-B)整理求得sinAsinB=sin2C,利用正弦定理換成邊的關(guān)系,同時(shí)利用正弦定理把(b+a)(sinB-sinA)=asinB角的正弦轉(zhuǎn)化成邊的問題,然后聯(lián)立方程求得b2=a2+c2,推斷出三角形為直角三角形.
(2)利用正弦定理化簡所求式子,將C的度數(shù)代入,用A表示出B,整理后利用余弦函數(shù)的值域即可確定出范圍.
解答 解:(1)由$\frac{a+b}{a}$=$\frac{sinB}{sinB-sinA}$,可得cos2C+cosC=1-cos(A-B),
得cosC+cos(A-B)=1-cos2C,cos(A-B)-cos(A+B)=2sin2C,
即sinAsinB=sin2C,根據(jù)正弦定理,ab=c2,①,
又由正弦定理及(b+a)(sinB-sinA)=asinB可知b2-a2=ab,②,由①②得b2=a2+c2,
所以△ABC是直角三角形,且B=90°;
(2)由正弦定理化簡$\frac{a+\sqrt{3}c}$=$\frac{sinA+\sqrt{3}sinC}{sinB}$=sinA+$\sqrt{3}$sinC=sinA+$\sqrt{3}$cosA=2sin(A+60°),
∵$\frac{1}{2}$<sin(A+60°)≤1,A∈(0,$\frac{π}{2}$)即1<2sin(A+60°)≤2,
則$\frac{a+\sqrt{3}c}$的取值范圍是(1,2].
點(diǎn)評 本題主要考查了三角形的形狀的判斷,正弦定理的應(yīng)用.考查了學(xué)生分析問題和解決問題的能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 已知F1(-4,0),F(xiàn)2(4,0),到兩點(diǎn)F1,F(xiàn)2的距離之和大于8的點(diǎn)的軌跡是橢圓 | |
| B. | 已知F1(-4,0),F(xiàn)2(4,0),到兩點(diǎn)F1,F(xiàn)2的距離之和等于6的點(diǎn)的軌跡是橢圓 | |
| C. | 到點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和等于從點(diǎn)(5,3)到F1,F(xiàn)2的距離之和的點(diǎn)的軌跡是橢圓 | |
| D. | 到點(diǎn)F1(-4,0),F(xiàn)2(4.0)距離相等的點(diǎn)的軌跡是橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com