分析 利用an=Sn-Sn-1并對等式Sn-Sn-1=Sn•Sn-1(n≥2)兩邊同時(shí)取倒數(shù)可知數(shù)列{$\frac{1}{{S}_{n}}$}是以$\frac{9}{2}$為首項(xiàng)、-1為公差的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論.
解答 解:∵an=Sn-Sn-1=Sn•Sn-1(n≥2),
∴$\frac{{S}_{n}-{S}_{n-1}}{{S}_{n}{•S}_{n-1}}$=$\frac{{S}_{n}•{S}_{n-1}}{{S}_{n}•{S}_{n-1}}$,即$\frac{1}{{S}_{n-1}}$-$\frac{1}{{S}_{n}}$=1,
∴$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{n-1}}$-1,
又∵$\frac{1}{{a}_{1}}$=$\frac{9}{2}$,
∴數(shù)列{$\frac{1}{{S}_{n}}$}是以$\frac{9}{2}$為首項(xiàng)、-1為公差的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=$\frac{9}{2}$-(n-1)=$\frac{11}{2}$-n=$\frac{-2n+11}{2}$,
∴Sn=$\frac{2}{-2n+11}$,
∴an+1=Sn+1-Sn
=$\frac{2}{-2(n+1)+11}$-$\frac{2}{-2n+11}$
=$\frac{4}{(-2n+9)(-2n+11)}$,
又∵a1=$\frac{2}{9}$不滿足上式,
∴an=$\left\{\begin{array}{l}{\frac{2}{9},}&{n=1}\\{\frac{4}{(11-2n)(13-2n)},}&{n≥2}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{\frac{2}{9},}&{n=1}\\{\frac{4}{(11-2n)(13-2n)},}&{n≥2}\end{array}\right.$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com