【題目】學(xué)校水果店有蘋果、梨、香蕉、石榴、橘子、葡萄、西柚等
種水果,西柚數(shù)量不多,只夠一個人購買,甲乙丙丁戊
位同學(xué)去購買,每人只能選擇其中一種,這
位同學(xué)購買后,恰好買了其中三種水果,則他們購買水果的可能情況有___________種.
【答案】1170
【解析】
由于西柚水果比較特殊(只夠一個人購買),根據(jù)
位同學(xué)中有沒有人買西柚,分成兩種情況,即可得出答案.
(1)假設(shè)
位同學(xué)中,沒有人選擇西柚.則
位同學(xué)購買了剩下6種水果里面的3種,
則使用隔板法,把
位同學(xué)分成3份,共有
種分法.
再從剩下6種水果里面取3種,共有
,最后把3種水果進行全排列分給5位同學(xué),共有
即有:![]()
![]()
種情況.
(2)假設(shè)
位同學(xué)中,有一位同學(xué)選擇西柚.從
位同學(xué)中選取一位同學(xué)有
種取法,
則
位同學(xué)購買了剩下6種水果里面的2種,有
種取法.
把4位同學(xué)分成2份,共有
種分法. 最后把2種水果進行全排列分給4位同學(xué),有
種排列.
共有:![]()
![]()
![]()
種情況.
故共有:![]()
![]()
+![]()
![]()
![]()
=1170種情況.
故答案為:1170.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(I)判斷曲線
在點
處的切線與曲線
的公共點個數(shù);
(II)若函數(shù)
有且僅有一個零點,求
的值;
(III)若函數(shù)
有兩個極值點
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
中,
,將
沿對角線
向上翻折,若翻折過程中
長度在
內(nèi)變化,則點
所形成的運動軌跡的長度為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面
平面
,四邊形
是邊長為4的正方形,
,
,
分別是
,
的中點.
![]()
(1)求證:
平面
;
(2)若直線
與平面
所成角等于
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的圖象的一個最高點為(
),與之相鄰的一個對稱中心為
,將f(x)的圖象向右平移
個單位長度得到函數(shù)g(x)的圖象,則( )
A.g(x)為偶函數(shù)
B.g(x)的一個單調(diào)遞增區(qū)間為![]()
C.g(x)為奇函數(shù)
D.函數(shù)g(x)在
上有兩個零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易·系辭上》有“河出圖,洛出書”之說.河圖、洛書是中國古代流傳下來的兩幅神秘圖案,蘊含了深奧的宇宙星象之理,被譽為“宇宙魔方”,是中華文化,陰陽術(shù)數(shù)之源.其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為1的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機抽取的100個產(chǎn)品進行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
![]()
(1)求圖中
的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,視頻率作為概率,在該條生產(chǎn)線中隨機抽取3個產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定“口徑誤差”的計算方式為:管件內(nèi)外兩個口徑實際長分別為
,標準長分別為
則“口徑誤差”為
只要“口徑誤差”不超過
就認為合格,已知這臺車床分晝夜兩個獨立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗,則每件產(chǎn)品的檢驗費用為2.5元;若有不合格品進入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com