【答案】
分析:(1)根據(jù)恒等式和偶函數(shù)的定義,以-x代x,求出函數(shù)的周期是12,又因2009=167×12+5,故f(2009)就是f(5)的值.
(2)根據(jù)當(dāng)x
1,x
2∈[0,3]且x
1≠x
2時,都有

>0,可知函數(shù)在[0,3]上單調(diào)遞增,又f(x)為偶函數(shù),故在[-3,0]上為減函數(shù).又f(3)=0,故可求解.
解答:解:由題意,(1)因?yàn)閥=f(x)是R上的偶函數(shù),所以f(x)=f(-x),因?yàn)閒(x+6)=f(x)+f(3),
所以f(-x+6)=f(-x)+f(3)=f(x)+3=f(x+6),所以f(x)關(guān)于x=6對稱,
因?yàn)閒(6-x)=f(6+x),所以f(-x)=f(x+12)=f(x),所以f(x)是以12為周期的函數(shù),
∴f(2009)=f(5)=f(-5)=-1;
(2)根據(jù)當(dāng)x
1,x
2∈[0,3]且x
1≠x
2時,都有

>0,可知函數(shù)在[0,3]上單調(diào)遞增
又f(x)為偶函數(shù),故在[-3,0]上為減函數(shù).
令x=-3,則由f(x+6)=f(x)+f(3)得f(3)=f(-3)+f(3)=2f(3),故f(3)=0
因?yàn)閒(x+6)=f(x)+f(3),所以f(3)=f(-3)+f(3)=0,f(x)關(guān)于x=6對稱,所以f(9)=0,因?yàn)閥=f(x)是R上的偶函數(shù),f(-9)=0,f(-3)=0,因 為f(x)在[0,3]上是增函數(shù),所以[0,3]上只有一解為3,對稱性[-3,0]只有一解為-3,因?yàn)閒(x+6)=f(x)+f(3),且f(x)在[0,3]上是增函數(shù),所以f(x)在[6,9]上是增函數(shù),所以[6,9]上只有一解為9,因?yàn)閒(x)關(guān)于x=6對稱,所以f(x)在[3,6]上只有一解為3,由對稱性知[-9,-6],[-6,-3]各只有一解-9,-3,
要使方程f(x)=0在區(qū)間[a,6-a]上恰有3個不同實(shí)根,則a>-9,6-a≤9
∴實(shí)數(shù)a的取值范圍是(-9-3]
故答案為-1,(-9-3]
點(diǎn)評:本題是一道抽象函數(shù)問題,題目的設(shè)計“小而巧”,解題的關(guān)鍵是巧妙的賦值,利用其奇偶性和所給的關(guān)系式得到函數(shù)的周期性,再利用周期性求函數(shù)值.靈活的“賦值法”是解決抽象函數(shù)問題的基本方法.