欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知函數(shù)f(x)=$\frac{2{x}^{2}}{1-x^2}$,則f(-10)+f(-9)+f(-8)+…+f(-2)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{10}$)=-18.

分析 由已知函數(shù)可求得,$f(x)+f(-\frac{1}{x})$=-2,代入即可求解.

解答 解:∵f(x)=$\frac{2{x}^{2}}{1-x^2}$,
∴$f(x)+f(-\frac{1}{x})$=$\frac{2{x}^{2}}{1-{x}^{2}}+\frac{2(-\frac{1}{x})^{2}}{1-(-\frac{1}{x})^{2}}$=$\frac{2{x}^{2}}{1-{x}^{2}}+\frac{2}{{x}^{2}-1}$=-2,
則f(-10)+f(-9)+f(-8)+…+f(-2)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{10}$)
=[f(-2)+f($\frac{1}{2}$)]+[f(-3)+f($\frac{1}{3}$)]+…+[f(-10)+f($\frac{1}{10}$)]
=-2×9=-18.
故答案為:-18

點(diǎn)評 本題主要考查了函數(shù)值的求解,解題的關(guān)鍵是發(fā)現(xiàn)函數(shù)值的規(guī)律:$f(x)+f(-\frac{1}{x})$=-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1}{x}$,a∈R;
(1)設(shè)h(x)=f(x)+g(x),若h(x)在定義域內(nèi)存在極值,求a的取值范圍;
(2)設(shè)f′(x)是f(x)的導(dǎo)函數(shù),若0<x1<x2,a≠0,f′(t)=$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$(x1<t<x2),求證:t<$\frac{{{x_1}+{x_2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC三個頂點(diǎn)分別為A(1,0),B(1,4),C(3,2),直線l經(jīng)過點(diǎn)(0,4).
(1)求證:△ABC是等腰直角三角形;
(2)求△ABC外接圓⊙M的方程;
(3)若直線l與⊙M相交于P,Q兩點(diǎn),且PQ=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)N(4,0),點(diǎn)M(x0,y0)在圓x2+y2=4上運(yùn)動,點(diǎn)P(x,y)為線段MN的中點(diǎn).
(Ⅰ)求點(diǎn)P(x,y)的軌跡方程;
(Ⅱ)求點(diǎn)P到直線3x+4y-56=0的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l:x-y+m=0與橢圓C:$\frac{{x}^{2}}{2}$+y2=1交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)不在圓x2+y2=$\frac{5}{9}$內(nèi),則m的取值范圍為(  )
A.m≥1或m≤-1B.-$\sqrt{3}$≤m≤-1或1≤≤m≤$\sqrt{3}$C.-1≤m≤1D.-$\sqrt{3}$<m≤-1或1≤m<$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,橢圓長軸端點(diǎn)為點(diǎn)A、B、O為橢圓的中心,F(xiàn)為橢圓的上焦點(diǎn),且$\overrightarrow{AF}•\overrightarrow{FB}=1,|\overrightarrow{OF}|=1$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若四邊形MPNQ的四個頂點(diǎn)都在橢圓上,對角線PQ,MN互相垂直并且它們的交點(diǎn)恰為點(diǎn)F,求四邊形MPNQ面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過橢圓右焦點(diǎn)F作兩條弦AB與CD,當(dāng)弦AB與x軸垂直時,|AB|=$\sqrt{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若A點(diǎn)在第一象限,$\overrightarrow{AB}$•$\overrightarrow{CD}$=0,直線AB,CD的斜率分別為k1,k2,
(i)當(dāng)k1+k2=0時,求△OAB的面積;
(ii)試判斷四邊形ACBD的面積是否有最小值?若有最小值,請求出最小值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1、F2是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的兩焦點(diǎn),過點(diǎn)F1的直線交橢圓于A、B兩點(diǎn),在△AF1B中,若有兩邊之和是10,則第三邊的長度為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知有序數(shù)對(a,b)∈{(a,b)|a∈[0,4],b∈[0,4]},則方程x2-2ax+b=0有實(shí)根的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊答案