分析 根據式子有意義列出不等式,結合正弦函數的圖象和性質得出定義域.
解答 解:(1)由式子有意義得x2≥0,式子恒成立,∴y=sin$\sqrt{{x}^{2}}$的定義域為R;
(2)由式子有意義得1+2sinx≠0,解得sinx≠-$\frac{1}{2}$.∴x≠-$\frac{π}{6}$+2kπ且x≠-$\frac{5π}{6}$+2kπ.
∴y=$\frac{1}{1+2sinx}$的定義域為{x∈R|x≠-$\frac{π}{6}$+2kπ,且x≠-$\frac{5π}{6}$+2kπ};
(3)由式子有意義得$\frac{1}{2}$+sinx≥0,即sinx≥-$\frac{1}{2}$.∴-$\frac{π}{6}$+2kπ≤x≤$\frac{7π}{6}$+2kπ.
∴y=$\sqrt{\frac{1}{2}+sinx}$的定義域為{x|-$\frac{π}{6}$+2kπ≤x≤$\frac{7π}{6}$+2kπ,k∈Z}.
點評 本題考查了正弦函數的圖象與性質,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
| A. | |a|>|b| | B. | $\frac{a}<1$ | C. | lga<lgb | D. | ${(\frac{1}{2})^a}<{(\frac{1}{2})^b}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 0 | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com