【題目】已知平面上的三點
、
、
.
(1)求以
、
為焦點且過點
的橢圓的標(biāo)準方程;
(2)設(shè)點
、
、
關(guān)于直線
的對稱點分別為
、
、
,求以
、
為焦點且過點
的雙曲線的標(biāo)準方程.
【答案】(1)
(2)
.
【解析】試題分析:(1)根據(jù)題意設(shè)出所求的橢圓的標(biāo)準方程,然后代入半焦距,根據(jù)橢圓的定義求出
,從而可得
,進而可得橢圓的標(biāo)準方程;(2)點
、
、
關(guān)于直線
的對稱點分別為
、
、
.設(shè)所求雙曲線的標(biāo)準方程為
(
,
)其半焦距
,由雙曲線定義得
,得
,從而可得
,進而可得
、
為焦點且過點
的雙曲線的標(biāo)準方程.
試題解析:(1)由題意知,焦點在
軸上,可設(shè)橢圓的標(biāo)準方程為
(
)
其半焦距
由橢圓定義得
∴
∴
故橢圓的標(biāo)準方程為
.
(2)點
、
、
關(guān)于直線
的對稱點分別為
、
、
.設(shè)所求雙曲線的標(biāo)準方程為
(
,
)其半焦距
,
由雙曲線定義得
∴
,∴
,
故所求的雙曲線的標(biāo)準方程為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點在x軸上的橢圓C:
經(jīng)過點
,橢圓C的離心率為
.
,
是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標(biāo)準方程;
(2)若點M為
的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù)
,使得
;若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓![]()
的離心率為
,左、右焦點分別為
、
,
為橢圓C上一點,且
的中點B在y軸上,
.
![]()
(1)求橢圓C的標(biāo)準方程:
(2)若直線![]()
交橢圓于P、Q兩點,若PQ的中點為N,O為原點,直線ON交直線
于點M,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,左、右焦點分別為
,
,焦距為6.
(1)求橢圓
的方程.
(2)過橢圓左頂點的兩條斜率之積為
的直線分別與橢圓交于
點.試問直線
是否過某定點?若過,求出該點的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的方程為
.以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程;
(2)若
與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
Ⅰ
若
時,求函數(shù)
的單調(diào)區(qū)間;
Ⅱ
若
,則當(dāng)
時,記
的最小值為M,
的最大值為N,判斷M與N的大小關(guān)系,并寫出判斷過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列
滿足:
,
.
(1)求數(shù)列
的通項公式;
(2)是否存在正整數(shù)
,使得
?若存在,求
的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺變頻空調(diào)送往市內(nèi)某商場,現(xiàn)有4輛甲型貨車和8輛乙型貨車可供調(diào)配,每輛甲型貨車的運輸費用是400元,可裝空調(diào)20臺,每輛乙型貨車的運輸費用是300元,可裝空調(diào)10臺,若每輛車至多運一次,則企業(yè)所花的最少運費為( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點圖和對比表:
![]()
攝氏溫度 |
|
|
|
|
|
|
|
|
熱飲杯數(shù) |
|
|
|
|
|
|
|
|
(1)從散點圖可以發(fā)現(xiàn),各點散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計中常用相關(guān)系數(shù)
來衡量兩個變量之間線性關(guān)系的強弱.統(tǒng)計學(xué)認為,對于變量
、
,如果
,那么負相關(guān)很強;如果
,那么正相關(guān)很強;如果
,那么相關(guān)性一般;如果
,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記
為不超過
的最大整數(shù),如
,
.對于(i)中求出的線性回歸方程
,將
視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知氣溫
與當(dāng)天熱飲每杯的銷售利潤
的關(guān)系是
(單位:元),請問當(dāng)氣溫
為多少時,當(dāng)天的熱飲銷售利潤總額最大?
(參考公式)
,
,![]()
(參考數(shù)據(jù))
,
,
.
,
,
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com