欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.設(shè)Sn為數(shù)列{cn}的前n項和,an=2n,bn=50-3n,cn=$\left\{\begin{array}{l}{{a}_{n}{,a}_{n}{>b}_{n}}\\{_{n}{,a}_{n}{<b}_{n}}\end{array}\right.$.
(1)求c4與c8的等差中項;
(2)當(dāng)n>5時,設(shè)數(shù)列{Sn}的前n項和為Tn
(。┣骉n;
(ⅱ)當(dāng)n>5時,判斷數(shù)列{Tn-34ln}的單調(diào)性.

分析 (1)求出c4=38,c8=256,由此能求出c4與c8的等差中項.
(2)(i)當(dāng)n≤5時,an<bn,則S1=47,S2=91,S3=132,S4=170,S5=205,當(dāng)n=5時,an=bn,從而Sn=b1+b2+b3+b4+b5+a6+a7+…+an=205+$\frac{{2}^{6}-{2}^{n+1}}{1-2}$=2n+1+141.由此能求出當(dāng)n>5時,數(shù)列{Sn}的前n項和為Tn
(ii)設(shè)dn=Tn-341n=2n+2-200n-188,則dn+1-dn=2n+2-200,由此能求出當(dāng)n>5時,數(shù)列{Tn-34ln}的單調(diào)遞增.

解答 解:(1)∵a4<b4=38,∴c4=38,
∵b8<a8=256,∴c8=256,
∴c4與c8的等差中項為$\frac{{c}_{4}+{c}_{8}}{2}$=$\frac{38+256}{2}=147$.
(2)(i)當(dāng)n≤5時,an<bn
則S1=47,S2=91,S3=132,S4=170,S5=205,
當(dāng)n=5時,an=bn,
則Sn=b1+b2+b3+b4+b5+a6+a7+…+an
=205+$\frac{{2}^{6}-{2}^{n+1}}{1-2}$=2n+1+141.
∴當(dāng)n>5時,Tn=47+91+132+170+205+(27+141)+(28+141)+…+(2n+1+141)
=645+$\frac{{2}^{7}-{2}^{n+2}}{1-2}$+141(n-5)=2n+2+141n-188.
(ii)設(shè)dn=Tn-341n=2n+2-200n-188,
dn+1-dn=2n+2-200,
當(dāng)n>5時,2n+2-200>0,
∴dn+1>dn,
∴當(dāng)n>5時,數(shù)列{Tn-34ln}的單調(diào)遞增.

點評 本題考查數(shù)列中的第4項與第8項的等差中項的求法,考查數(shù)列的前n項和的求法,考查數(shù)列的單調(diào)性質(zhì)的判斷,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若復(fù)數(shù)$z=({{a^2}-3})-({a+\sqrt{3}})i$為純虛數(shù),則$\frac{{a+{i^{2011}}}}{{1+\sqrt{3}i}}$=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知在某項射擊測試中,規(guī)定每人射擊3次,至少2次擊中8環(huán)以上才能通過測試.若某運動員每次射擊擊中8環(huán)以上的概率為$\frac{2}{3}$,且各次射擊相互不影響,則該運動員通過測試的概率為( 。
A.$\frac{20}{27}$B.$\frac{4}{9}$C.$\frac{8}{27}$D.$\frac{6}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某次水下考古活動中,需要潛水員潛入水深為30米的水底進行作業(yè).其用氧量包含3個方面:①下潛時,平均速度為v(米/單位時間),單位時間內(nèi)用氧量為v2;②在水底作業(yè)需5個單位時間,每個單位時間用氧量為0.4;③返回水面時,平均速度為$\frac{v}{2}$(米/單位時間),單位時間用氧量為0.2.記該潛水員在此次考古活動中,總用氧量為y.
(1)將y表示為v的函數(shù);
(2)試確定下潛速度v,使總的用氧量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=2cosϕ}\\{y=sinϕ}\end{array}}$(ϕ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ(tanα•cosθ-sinθ)=1.(其中α為常數(shù),α∈(0,π),且α≠$\frac{π}{2}$),點A,B(A在x軸下方)是曲線C1與C2的兩個不同的交點.
(1)求曲線C1的普通方程與C2的直角坐標方程;
(2)求|AB|的最大值及此時點B的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和Sn滿足an+1=2Sn+6,且a1=6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Tn,證明:$\frac{1}{3•{T}_{1}}$+$\frac{1}{{3}^{2}•{T}_{2}}$+$\frac{1}{{3}^{3}•{T}_{3}}$+…+$\frac{1}{{3}^{n}•{T}_{n}}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合X是實數(shù)集R的子集,如果點x0∈R滿足:對任意a>0,都存在x∈X,使得|x-x0|<a,那么稱x0為集合X的聚點.用Z表示整數(shù)集,則在下列集合:①$\{\frac{n}{n+1}\left|{n∈Z,}\right.n≥0\}$,②{x∈R|x≠0},③$\{\frac{1}{n}\left|{n∈Z,}\right.n≠0\}$,④整數(shù)集Z中,以0為聚點的集合有( 。
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面區(qū)域內(nèi)運動,則z=x-y的最大值是(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A,B分別是離心率為$\frac{\sqrt{3}}{2}$的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點與右頂點,右焦點F2到直線AB的距離為$\frac{2\sqrt{5}-\sqrt{15}}{5}$.
(1)求橢圓E的方程;
(2)過點M(0,2)作直線l交橢圓E于P,Q兩點,求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案