欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.如圖,一隧道由一個(gè)長方形和拋物線構(gòu)成,現(xiàn)欲在隧道拋物線拱頂上安裝交通信息采集裝置,若位置C對(duì)隧道底AB的張角最大時(shí)采集效果最好,則采集效果最好時(shí)位置C到AB的距離是6-$\sqrt{15}$.

分析 建立如圖所示的坐標(biāo)系,求出拋物線的方程,設(shè)C(x,y)(y>-6),由A(-3,-6),B(3,-6),可得kCA=$\frac{y+6}{x+3}$,kCB=$\frac{y+6}{x-3}$,可得tan∠BCA,利用基本不等式,即可得出結(jié)論.

解答 解:建立如圖所示的坐標(biāo)系,設(shè)拋物線方程為x2=-2py(p>0),
將點(diǎn)(4,-4)代入,可得p=2,
所以拋物線方程為x2=-4y,
設(shè)C(x,y)(y>-6),則
由A(-3,-6),B(3,-6),可得kCA=$\frac{y+6}{x+3}$,kCB=$\frac{y+6}{x-3}$,
∴tan∠BCA=$\frac{\frac{y+6}{x+3}-\frac{y+6}{x-3}}{1+\frac{y+6}{x+3}•\frac{y+6}{x-3}}$=$\frac{-6(y+6)}{{x}^{2}-9+(y+6)^{2}}$
=$\frac{-6(y+6)}{{y}^{2}+8y+27}$,
令t=y+6(t>0),則tan∠BCA=$\frac{-6t}{{t}^{2}-4t+15}$=$\frac{-6}{t+\frac{15}{t}-4}$≤$\frac{-6}{2\sqrt{15}-4}$,
所以t=$\sqrt{15}$,y=$\sqrt{15}$-6時(shí),位置C對(duì)隧道底AB的張角最大,
故答案為:6-$\sqrt{15}$.

點(diǎn)評(píng) 本題考查拋物線的方程與應(yīng)用,考查基本不等式,確定拋物線的方程及tan∠BCA,正確運(yùn)用基本不等式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實(shí)數(shù)m,n滿足m•n>0,m+n=-1,則$\frac{1}{m}+\frac{1}{n}$的最大值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=-$\frac{1}{3}$x3+2ax2-3a2x+b(0<a<1)
(Ⅰ)求函數(shù)f(x)單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[a+1,a+2]時(shí),恒有|f′(x)|≤a,試確定a的取值范圍;
(Ⅲ)當(dāng)a=$\frac{2}{3}$時(shí),關(guān)于x的方程f(x)=0在區(qū)間[1,3]上恒有兩個(gè)相異的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí)有f(x)=2x,則f(2015)=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求(3x+$\frac{1}{\sqrt{x}}$)5的展開式中含有x的整數(shù)次冪的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),則實(shí)數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知tanx=2,則tan2(x-$\frac{π}{4}$)等于( 。
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合M={x||x|≤2,x∈R},N={x∈R|(x-3)lnx2=0},那么M∩N={1,-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx-2x+3,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=$\frac{2t}{x}$-x+1,若g(x)>f(x)對(duì)x>0恒成立,求整數(shù)t的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案