【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosA+a=2b.
(1)求角C的值;
(2)若a+b=4,當(dāng)c取最小值時(shí),求△ABC的面積.
【答案】
(1)解:方法一:∵2ccosA+a=2b,
∴2sinCcosA+sinA=2sinB,
∵A+B+C=π,
∴2sinCcosA+sinA=2sin(A+C),
即 2sinCcosA+sinA=2sinAcosC+2cosAsinC,
∴sinA=2sinAcosC,
∵sinA≠0,∴cosC=
,
又∵C是三角形的內(nèi)角,∴C=
.
方法二:∵2ccosA+a=2b,
∴
,
∴b2+c2﹣a2+ab=2b2,即 c2=a2+b2﹣ab,
∴
,
又∵C是三角形的內(nèi)角,∴c=
.
(2)解:方法一:由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,
∵a+b=4,故c2=a2+b2﹣ab=(a+b)2﹣3ab=16﹣3ab,
∴
(當(dāng)且僅當(dāng)a=b=2時(shí)等號(hào)成立),
∴c的最小值為2,故
.
方法二:由已知,a+b=4,即b=4﹣a,
由余弦定理得,c2=a2+b2﹣ab=(a+b)2﹣3ab,
∴c2=16﹣3a(4﹣a)=3(a﹣2)2+4,
∴當(dāng)a=2時(shí),c的最小值為2,故
.
【解析】方法一:(1)利用正弦定理、誘導(dǎo)公式、兩角和的正弦公式化簡(jiǎn)已知的式子,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C;(2)利用余弦定理列出方程,由條件和完全平方公式化簡(jiǎn)后,利用基本不等式求出c的最小值,由面積公式求出△ABC的面積;方法二:(1)利用余弦定理化簡(jiǎn)已知的式子得到邊的關(guān)系,由余弦定理求出cosC的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C;(2)利用余弦定理列出方程,結(jié)合條件消元后,利用一元二次函數(shù)的性質(zhì)求出c的最小值,由面積公式求出△ABC的面積.
【考點(diǎn)精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:
;余弦定理:
;
;
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線(xiàn)
(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , |F1F2|=8,P是雙曲線(xiàn)右支上的一點(diǎn),直線(xiàn)F2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=2,則該雙曲線(xiàn)的離心率為( ) ![]()
A.![]()
B.![]()
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】x∈R,則f(x)與g(x)表示同一函數(shù)的是( )
A.f(x)=x2 , ![]()
B.f(x)=1,g(x)=(x﹣1)0
C.
, ![]()
D.
,g(x)=x﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料.已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)一噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為( )
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
A.12萬(wàn)元
B.16萬(wàn)元
C.17萬(wàn)元
D.18萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中a>0.
(Ⅰ)當(dāng)a=2時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最小值.(其中e是自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 對(duì)任意的n∈N* , 點(diǎn)(n,Sn)恒在函數(shù)y=
x的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Tn=
,若對(duì)于一切的正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)Kn為數(shù)列{bn}的前n項(xiàng)和,其中bn=2an , 問(wèn)是否存在正整數(shù)n,t,使
成立?若存在,求出正整數(shù)n,t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=
(x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≤﹣1時(shí),f(x)=x+b,且f(x)的圖象經(jīng)過(guò)點(diǎn)(﹣2,0),在y=f(x)的圖象中有一部分是頂點(diǎn)為(0,2),過(guò)點(diǎn)(﹣1,1)的一段拋物線(xiàn).
(1)試求出f(x)的表達(dá)式;
(2)求出f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}前n項(xiàng)和為Sn , 首項(xiàng)為a1 , 且
,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿(mǎn)足bn=(log2a3n+1)×(log2a3n+4),求證:
+
+
+…+
<
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com