數(shù)列{an}的前n項和為Sn,若a1=1,an+1 =3Sn(n ≥1),則a6=
| A.3 ×44 | B.3 ×44+1 | C.44 | D.44+1 |
答案:A
解析:由an+1 =3Sn,得an =3Sn-1(n ≥ 2),相減得an+1-an =3(Sn-Sn-1)= 3an,則an+1=4an(n ≥ 2),a1=1,a2=3,則a6= a2·44=3×44,選A.
解析考點:等比數(shù)列的前n項和.
分析:根據(jù)已知的an+1=3Sn,當n大于等于2時得到an=3Sn-1,兩者相減,根據(jù)Sn-Sn-1=an,得到數(shù)列的第n+1項等于第n項的4倍(n大于等于2),所以得到此數(shù)列除去第1項,從第2項開始,為首項是第2項,公比為4的等比數(shù)列,由a1=1,an+1=3Sn,令n=1,即可求出第2項的值,寫出2項以后各項的通項公式,把n=6代入通項公式即可求出第6項的值.
解:由an+1=3Sn,得到an=3Sn-1(n≥2),
兩式相減得:an+1-an=3(Sn-Sn-1)=3an,
則an+1=4an(n≥2),又a1=1,a2=3S1=3a1=3,
得到此數(shù)列除去第一項后,為首項是3,公比為4的等比數(shù)列,
所以an=a2qn-2=3×4n-2(n≥2)
則a6=3×44.
故選A
科目:高中數(shù)學 來源: 題型:
| Tn |
| ak |
| SnTn |
| Tn(1)+Tn(2)+…+Tn(n) |
| a12 |
| 2-q-q-1 |
| q-qn+1+1-q1-n |
| 1-q |
| a12 |
| 2-q-q-1 |
| q-qn+1+1-q1-n |
| 1-q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| pn-q |
| p |
| (p-1)(p-q) |
| 1 |
| pn |
| 1 |
| (2n-1)(2n+1-1) |
| 2 |
| 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ||
| 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 3 |
| 8 |
| n2+n |
| 4 |
| 5 |
| 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 6 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com