設(shè)函數(shù)f(x)=x|x-a|,若對(duì)任意的x1,x2∈[2,+∞),x1≠x2,不等式
>0恒成立,則實(shí)數(shù)a的取值范圍是________.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年廣東省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
某校在規(guī)劃課程設(shè)置方案的調(diào)研中,隨機(jī)抽取50名文科學(xué)生,調(diào)查對(duì)選做題傾向得下表:
![]()
(Ⅰ)從表中三種選題傾向中,選擇可直觀判斷“選題傾向與性別有關(guān)系”的兩種,作為選題傾向變量的取值,分析有多大的把握認(rèn)為“所選兩種選題傾向與性別有關(guān)系”.(只需要做出其中的一種情況)
(Ⅱ)按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的學(xué)生中抽取8人進(jìn)行問卷.
(ⅰ)分別求出抽取的8人中傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù);
(ⅱ)若從這8人中任選3人,記傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù)的差為
,求
的分布列及數(shù)學(xué)期望
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年廣東省高二下第二次月考文科數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)![]()
(1)判斷f(x)的奇偶性并證明;
(2)若f(x)的定義域?yàn)閇α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;
(3)若0<m<1,使f(x)的值域?yàn)閇logmm(β﹣1),logmm(α﹣1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請(qǐng)說明理由.(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年廣東省高二下第二次月考文科數(shù)學(xué)卷(解析版) 題型:選擇題
空間中,垂直于同一條直線的兩條直線( )
A.平行 B.相交 C.異面 D.以上均有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
f(x)的定義域?yàn)椋?,+∞),且對(duì)一切x>0,y>0都有f
=f(x)-f(y),當(dāng)x>1時(shí),有f(x)>0.
(1)求f(1)的值;(2)判斷f(x)的單調(diào)性并證明;
(3)若f(6)=1,解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆陜西師大附中高三下第十次模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在平面直角坐標(biāo)系中,點(diǎn)
是由不等式組
所確定的平面區(qū)域內(nèi)的動(dòng)點(diǎn),
是圓
的一條直徑的兩端點(diǎn),則
的最小值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆遼寧大連八中、二十四中高三模擬文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知
是定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2017081806035010804012/SYS201708180603537817712426_ST/SYS201708180603537817712426_ST.002.png">的偶函數(shù),當(dāng)
時(shí),
,那么,不等式
的解集是 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com