欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.在數(shù)列{an}中,an>0,a1=$\frac{1}{2}$,如果an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項(xiàng),那么a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{100}}{10{0}^{2}}$的值是$\frac{100}{101}$.

分析 an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項(xiàng),可得${a}_{n+1}^{2}$=$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$,an>0,a1=$\frac{1}{2}$,化為:anan+1+1=2an+1,化為$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=-1,利用等差數(shù)列的通項(xiàng)公式可得:解得an.可得$\frac{{a}_{n}}{{n}^{2}}$=$\frac{1}{n}-\frac{1}{n+1}$.再利用“裂項(xiàng)求和”即可得出.

解答 解:∵an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項(xiàng),
∴${a}_{n+1}^{2}$=$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$,an>0,a1=$\frac{1}{2}$,
化為:anan+1+1=2an+1,
化為$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=-1,
∴數(shù)列$\{\frac{1}{{a}_{n}-1}\}$是等差數(shù)列,首項(xiàng)為-2,公差為-1.
∴$\frac{1}{{a}_{n}-1}$=-2-(n-1)=-n-1,
解得an=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
∴$\frac{{a}_{n}}{{n}^{2}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{100}}{10{0}^{2}}$=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{100}-\frac{1}{101})$
=1-$\frac{1}{101}$
=$\frac{100}{101}$.

點(diǎn)評 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若點(diǎn)M(0,3)與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2)上任意一點(diǎn)P距離的最大值不超過2$\sqrt{7}$,求a的取值范圍是(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等差數(shù)列{an}中,已知a1=2,d=3,求a10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知100件產(chǎn)品有3件次品,其余為正品,現(xiàn):
①從中取出3件產(chǎn)品中恰有一件次品的抽法有多少種?
②從中抽出3件產(chǎn)品,至少有-件正品的抽法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在(2x+1)6(x+3)4展開式中,x2項(xiàng)的系數(shù)是( 。
A.1350B.4914C.6156D.6210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanα=3,分別求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)sinαcosα;
(3)(sinα+cosα)2;
(4)2sin2α+sinαcosα-3cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=axe-x+(a-1)lnx,其中a是常數(shù)(e是自然對數(shù)的底數(shù)),且f(x)在x=1處的切線l方程為ey=1.
(1)寫出函數(shù)f(x)的定義域,并求函數(shù)f(x)的單調(diào)區(qū)間和最值;
(2)設(shè)F(x)=xe-x,x∈R,如果x1≠x2,且F(x1)=F(x2),證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求過曲線y=cosx上點(diǎn)P($\frac{π}{3}$,$\frac{1}{2}$)且與過這點(diǎn)的切線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點(diǎn)$A(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$,且短軸兩個頂點(diǎn)與一個焦點(diǎn)恰好為直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點(diǎn)P,Q,且$\overrightarrow{OP}⊥\overrightarrow{OQ}$?若存在,求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案