分析 這是一個(gè)考查類比推理的題目,解題的關(guān)鍵是仔細(xì)觀察圖中給出的萊布尼茨三角形,并從三解數(shù)陣中,找出行與行之間數(shù)的關(guān)系,探究規(guī)律并其表示出來(lái).
解答 解:類比觀察得,將萊布尼茨三角形的每一行都能提出倍數(shù)$\frac{1}{{C_{n+1}^1}}$,
而相鄰兩項(xiàng)之和是上一行的兩者相拱之?dāng)?shù),所以類比式子$C_n^r+C_n^{r+1}=C_{n+1}^{r+1}$,有$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$.
故答案為:$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$.
點(diǎn)評(píng) 這是一道新運(yùn)算類的題目,其特點(diǎn)一般是“新”而不“難”,處理的方法一般為:根據(jù)新運(yùn)算的定義,將已知中的數(shù)據(jù)代入進(jìn)行運(yùn)算,易得最終結(jié)果.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | |$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$| | B. | ($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{{a}^{2}}$•$\overrightarrow{^{2}}$ | C. | 若$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)則$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$ | D. | 若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$則$\overrightarrow$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | 1 | C. | -$\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com