分析 (1)當n≥2時,a1=1,由an=$\frac{2{a}_{n-1}}{{a}_{n-1}+2}$,代入計算可得a2,a3,a4;
(2)利用數(shù)學歸納法證明即可.
解答 解:(1)當n≥2時,a1=1,由an=$\frac{2{a}_{n-1}}{{a}_{n-1}+2}$得
∴a2=$\frac{2}{3}$,a3=$\frac{1}{2}$,a4=$\frac{2}{5}$,
(2)猜想:an=$\frac{2}{n+1}$,
①當n=1時,猜想成立,
②假設(shè)當n=k時,猜想成立,即ak=$\frac{2}{k+1}$,
那么當n=k+1時,ak+1=$\frac{2{a}_{k}}{{a}_{k}+2}$=$\frac{2•\frac{2}{k+1}}{\frac{2}{k+1}+2}$=$\frac{2}{k+2}$,
∴當n=k+1時猜想成立,
由①②可得,對任意n∈N*,an=$\frac{2}{n+1}$都成立.
點評 本題考查數(shù)列遞推式,以及數(shù)學歸納法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | -2或3 | D. | -1或3 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com