欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左頂點(diǎn)為A,上頂點(diǎn)為E,O是坐標(biāo)原點(diǎn),△OAE面積為$\sqrt{3}$.
(1)求橢圓G的方程;
(2)若過(guò)橢圓G的右焦點(diǎn)作垂直于x軸的直線m與G在第一象限內(nèi)交于點(diǎn)M,平行于AM的直線l與橢圓G相交于B,C兩點(diǎn),判斷直線MB,MC是否關(guān)于直線m對(duì)稱,并說(shuō)明理由.

分析 (1)運(yùn)用橢圓的離心率公式和實(shí)際行動(dòng)面積公式,及a,b,c的關(guān)系,解得a,b,進(jìn)而得到橢圓方程;
(2)求得橢圓的右焦點(diǎn)坐標(biāo),M,A的坐標(biāo),求得斜率.可設(shè)BC的方程為y=$\frac{1}{2}$x+t,代入橢圓方程3x2+4y2=12,
可得x2+tx+t2-3=0,設(shè)B(x1,y1),C(x2,y2),運(yùn)用韋達(dá)定理和直線的斜率公式,可得kMB+kMC=0,進(jìn)而得到直線MB和直線MC關(guān)于直線m對(duì)稱.

解答 解:(1)由題意可得e=$\frac{c}{a}$=$\frac{1}{2}$,
由A(-a,0),E(0,b),
可得△OAE面積為$\sqrt{3}$,
即有$\frac{1}{2}$ab=$\sqrt{3}$,
又a2-b2=c2,
解得a=2,b=$\sqrt{3}$,c=1,
即有橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)橢圓的右焦點(diǎn)為(1,0),
可得M(1,$\frac{3}{2}$),A(-2,0),kAM=$\frac{\frac{3}{2}-0}{1+2}$=$\frac{1}{2}$,
設(shè)BC的方程為y=$\frac{1}{2}$x+t,代入橢圓方程3x2+4y2=12,
可得x2+tx+t2-3=0,
設(shè)B(x1,y1),C(x2,y2),
即有x1+x2=-t,x1x2=t2-3,
由kMB+kMC=$\frac{{y}_{1}-\frac{3}{2}}{{x}_{1}-1}$+$\frac{{y}_{2}-\frac{3}{2}}{{x}_{2}-1}$=$\frac{\frac{1}{2}{x}_{1}+t-\frac{3}{2}}{{x}_{1}-1}$+$\frac{\frac{1}{2}{x}_{2}+t-\frac{3}{2}}{{x}_{2}-1}$
=$\frac{{x}_{1}{x}_{2}-2t+3+(t-2)({x}_{1}+{x}_{2})}{({x}_{1}-1)({x}_{2}-1)}$=$\frac{{t}^{2}-3-2t+3-{t}^{2}+2t}{({x}_{1}-1)({x}_{2}-1)}$=0.
即有直線MB和直線MC關(guān)于直線m對(duì)稱.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式,考查直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡(jiǎn)整理,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合M={0,i}(i是虛數(shù)單位),集合N={x|x2+1=0,x∈C},則集合M∪N=(  )
A.iB.{i}C.{0,i}D.{-i,0,i}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)點(diǎn)P(x,y)是曲線a|x|+b|y|=1(a>0,b>0)上的動(dòng)點(diǎn),且滿足$\sqrt{{x^2}+{{(y+1)}^2}}+\sqrt{{x^2}+{{(y-1)}^2}}≤2\sqrt{2}$,則a+$\sqrt{2}$b的取值范圍為( 。
A.[2,+∞)B.[1,2]C.[1,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)p,q是兩個(gè)題,若¬p∧q是真命題,那么( 。
A.p是真命題且q是假命題B.p是真命題且q是真命題
C.p是假命題且q是真命題D.p是真命題且q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=ln(x+$\sqrt{a+{x}^{2}}$)為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線C2:y2=2px(p>0)的焦點(diǎn)F重合,且點(diǎn)F到直線x-y+1=0的距離為$\sqrt{2}$,C1與C2的公共弦長(zhǎng)為2$\sqrt{6}$.
(1)求橢圓C1的方程及點(diǎn)F的坐標(biāo);
(2)過(guò)點(diǎn)F的直線l與C1交于A,B兩點(diǎn),與C2交于C,D兩點(diǎn),求$\frac{1}{|\overrightarrow{AB}|}$+$\frac{1}{|\overrightarrow{CD}|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$,則z=|x+2y-3|的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,B、D是以AC為直徑的圓上的兩點(diǎn),其中$AB=\sqrt{t+1}$,$AD=\sqrt{t+2}$,則$\overrightarrow{AC}$$•\overrightarrow{BD}$=(  )
A.1B.2C.tD.2t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為$2\sqrt{2}$,離心率為$\frac{\sqrt{2}}{2}$,斜率為k,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且$\overrightarrow{AP}=3\overrightarrow{PB}$.
(I)求橢圓方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案